INTRODUCTION

Laboratory-ground and naturally weathered primary silicates show generally similar trends in specific surface area (SSA) as a function of mineralogy. White (1995) and White et al. (1996) concluded that SSA of naturally weathered PSMs generally increases for a given grain size from quartz to potassium feldspar (denoted K-spar) to plagioclase, and a similar trend was observed for SSA of laboratory-ground samples based upon a comparison of literature data by Brantley et al. (1999). This increasing SSA parallels an increase in rate of dissolution across the same compositional trend (Brantley et al. 1999), but little is known regarding the effects of mineralogy on SSA in laboratory-ground or naturally weathered silicate grains.

Although trends in SSA of laboratory-ground and naturally weathered silicates may be similar, many studies of weathered soil silicate grains (e.g., White and Peterson 1990; Anbeek 1992a, 1992b, 1993; Anbeek et al. 1994) have shown that specific surface area of silicates is larger for naturally weathered as compared to laboratory-ground samples. Some of this increased surface area was attributed to increased roughness of the external surface. However, some of the increased surface area may be due to internal surface related to porosity developed during crystallization or during solution etching (e.g., Montgomery and Brace 1975; Worden et al. 1990; Anbeek 1992a, 1992b, 1993; Walker et al. 1995; Lee and Parsons 1995; White 1995).

The contribution of surface area from porosity may not be appropriate for extrapolation of interfacelimited rates of dissolution of many silicates if internal surface is present and if it does not dissolve equivalently to external surface. In addition, the large errors associated in measuring SSA of coarse and/or impurity-containing silicates suggest that surface area-normalized kinetics in both field and laboratory systems will be difficult to estimate precisely. Quantification of the porosity in laboratory-ground and naturally weathered samples may help to alleviate some of the discrepancy between laboratory- and field-based estimates of weathering rate.

American Mineralogist, Volume 85, pages 1767–1783, 2000

Surface area and porosity of primary silicate minerals

SUSAN L. BRANTLEY AND NATHAN P. MELLOTT*

Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.

ABSTRACT

Surface area is important in quantifying mineral-water reaction rates. Specific surface area (SSA) was measured to investigate controls on this parameter for several primary silicate minerals (PSM) used to estimate rates of weathering. The SSA measured by gas adsorption for a given particle size of relatively impurity-free, laboratory-ground samples generally increases in the order: quartz ≈ olivine ≈ albite < oligoclase = bytownite < hornblende = diopside. Reproducibility of BET SSA values range from ±70% (SSA < 1000 cm²/g) to ±5% (SSA > 4000 cm²/g) and values measured with N₂ were observed to be up to 50% larger than values measured with Kr. For laboratory-ground Amelia albite and San Carlos olivine, SSA can be calculated using log (SSA, cm²/g) = b + m log (d), where d = grain diameter (µm), b = 5.2 ± 0.2 and m = –1.0 ± 0.1. A similar equation was previously published for laboratory-ground quartz. Some other samples showed SSA higher than predicted by these equations. In some cases, high SSA is attributed to significant second phase particulate content, but for other laboratory-ground samples, high SSA increased with observed hysteresis in the adsorption-desorption isotherms. Such hysteresis is consistent with the presence of pores with diameters in the range 2 to 50 nm (mesopores). In particular, porosity that contributes to BET-measured SSA is inferred for examples of laboratory-ground diopside, hornblende, and all compositions of plagioclase except albite, plus naturally weathered quartz, plagioclase, and potassium feldspar. Previous workers documented similar porosity in laboratory-ground potassium feldspar.

Surface area measured by gas adsorption may not be appropriate for extrapolation of interfacelimited rates of dissolution of many silicates if internal surface is present and if it does not dissolve equivalently to external surface. In addition, the large errors associated in measuring SSA of coarse and/or impurity-containing silicates suggest that surface area-normalized kinetics in both field and laboratory systems will be difficult to estimate precisely. Quantification of the porosity in laboratory-ground and naturally weathered samples may help to alleviate some of the discrepancy between laboratory- and field-based estimates of weathering rate.

* E-mail: npm113@psu.edu