Radioluminescence and thermoluminescence of rare earth element and phosphorus-doped zircon

TURGAY KARALI,¹ NURDOGAN CAN,² PETER D. TOWNSEND,¹ ALED P. ROWLANDS,³ AND JOHN M. HANCHAR^{4,*}

¹School of Engineering, University of Sussex, Brighton, BN1 9QH, U.K.
²Faculty of Arts and Sciences, Physics Department, Celal Bayar University, Manisa, Turkey
³Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, SY23 4PP U.K.
⁴Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indianna 46556, U.S.A.

ABSTRACT

The radioluminescence and thermoluminescence spectra of synthetic zircon crystals doped with individual trivalent rare earth element (REE) ions (Pr, Sm, Eu, Gd, Dy, Ho Er, and Yb) and P are reported in the temperature range 25 to 673 K. Although there is some intrinsic UV/blue emission from the host lattice, the dominant signals are from the rare-earth sites, with signals characteristic of the REE³⁺ states. The shapes of the glow curves are different for each dopant, and there are distinct differences between glow peak temperatures for different rare-earth lines of the same element. Within the overall set of signals there are indications of linear trends in which some glow peak temperatures vary as a function of the ionic size of the rare earth ions. The temperature shifts of the peaks are considerable, up to 200°, and much larger than those cited in other rare-earth-doped crystals of LaF₃ and Bi₄Ge₃O₁₂. The data clearly suggest that the rare-earth ions are active both in the trapping and luminescence steps, and hence the TL occurs within localized defect complexes that include REE³⁺ ions.