XPS study of reductive dissolution of birnessite by H₂SeO₃ with constraints on reaction mechanism

D. BANERJEE* AND H.W. NESBITT

Department of Earth Sciences, University of Western Ontario, London, Ontario, N6A 5B7 Canada

ABSTRACT

Reductive dissolution of 7 Å birnessite $[Mn_{0.5}^{+}Mn_{0.7}^{+}SMn_{0.7}^{+}O_{1.7}(OH)_{0.25}]$ by selenious acid (H₂SeO₃) produces Mn³⁺ and Mn²⁺ surface reaction products (here represented as S-MnOOH and S-MnO, respectively) and Mn^{2+,3+}-selenite surface complexes at the solution-mineral interface.

 $Mn2p_{3/2}$, Se3d, and O1s X-ray photoelectron spectra of reacted surfaces reveal that Mn^{4+} of birnessite is reduced simultaneously to Mn^{3+} and Mn^{2+} while Se⁶⁺ is oxidized to Se⁴⁺ according to the probable stoichiometric reactions:

 $2MnO_2 + H_2SeO_3 + H_2O \rightarrow 2S-MnOOH + H_2SeO_4$

 $MnO_2 + H_2SeO_3 \rightarrow S-MnO + H_2SeO_4$

There is no XPS evidence for reduction of surface Mn^{3+} to Mn^{2+} in the presence of selenite. Whereas this reaction proceeds in the presence of arsenite, selenite apparently inhibits reduction of Mn^{3+} , perhaps through formation of a strong Mn-selenite surface complex.

The rate of release of Mn^{2+} to dilute selenious acid $(1.5 \times 10^{-3} M)$ is considerably lower than the rate of release to aerated, distilled water at similar pH. This behavior suggests that adsorbed selenite complexes impede the proton promoted dissolution of the soluble Mn^{2+} component of birnessite.