American Mineralogist, Volume 85, pages 600-604, 2000

LETTERS

In-situ Raman spectra of dissolved silica species in aqueous fluids to 900 °C and 14 kbar

NIKOLAY ZOTOV* AND HANS KEPPLER

Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany

ABSTRACT

The Raman spectra of fluids in equilibrium with solid quartz in the system H₂O-SiO₂ were measured to 900 °C and 14 kbar using an externally heated diamond cell. Dissolved silica species were identified by comparing the measured spectra with calculated normal mode frequencies and Raman intensities. At crustal pressures and temperatures, H₄SiO₄ is the dominant silica species in aqueous fluids, with a strong Raman band at 760–785 cm⁻¹. At the *P*-*T* conditions of the upper mantle, however, H₆Si₂O₇ dimers and possibly higher polymers coexist with H₄SiO₄ in the fluid. The most intense Raman bands of H₆Si₂O₇ occur at about 630, 920, and 230 cm⁻¹. The presence of high concentrations of ionized silica species in the solution can be ruled out. The observed speciation changes explain the drastic increase of silica solubility in water at lower crustal and upper mantle *P*-*T* conditions.