American Mineralogist, Volume 85, pages 181–188, 2000

²⁹Si and ²⁷Al MAS-NMR spectroscopy of β-eucryptite (LiAlSiO₄): The enthalpy of Si,Al ordering

BRIAN L. PHILLIPS,^{1,*} HONGWU XU,^{2,†} PETER J. HEANEY,^{2,‡} AND ALEXANDRA NAVROTSKY^{1,3}

¹Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616, U.S.A. ²Department of Geosciences, Princeton University, Princeton, New Jersey 08544, U.S.A. ³Department of Chemistry, University of California, Davis, California 95616, U.S.A.

ABSTRACT

By combining data from oxide melt solution calorimetry and ²⁹Si MAS-NMR spectroscopy, the enthalpy for short-range Si,Al ordering in β -eucryptite (LiAlSiO₄) was determined for a series of samples prepared by glass annealing. Si,Al ordered β -eucryptite gives a single ²⁹Si NMR peak for two unresolved crystallographic sites, but two distinct ²⁷Al resonances that differ in both chemical shift and quadrupolar coupling. Samples of β -eucryptite crystallized from glass contain additional ²⁹Si NMR peaks, indicating significant levels of short-range Si,Al disorder. This disorder decreases exponentially with annealing time at 1173 K, from 0.55(±0.04) Al-O-Al linkages per formula unit after one hour to 0.05(±0.01) after 70.5 hours. The decrease in the concentration of Al-O-Al linkages with annealing time correlates linearly with enthalpies of drop-solution in molten lead borate, giving an enthalpy of $\Delta H_{ort} = -26 \pm 3$ kJ/mol for the reaction: Al-O-Al + Si-O-Si $\rightarrow 2$ (Si-O-Al).

Additional NMR results are presented for samples synthesized along the SiO_2 -LiAlSiO₄ join (quartz to β -eucryptite). Solid solution samples with compositions 20 and 69 mol% quartz appear to have very few Al-O-Al linkages (<0.04 per formula unit).