American Mineralogist, Volume 85, pages 189–193, 2000

The nuclear and magnetic structure of "white rust"— $Fe(OH_{0.86}D_{0.14})_2$

JOHN B. PARISE,^{1,*} WILLIAM G. MARSHALL,² RONALD I. SMITH,² H.D. LUTZ,³ AND HENDRIK MÖLLER³

¹Center for High Pressure Research and Department of Geosciences and Department of Chemistry, State University of New York, Stony Brook, New York 11794-3400, U.S.A.

²ISIS Neutron Facility, CLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, U.K. ³Anorganische Chemie I, Universität Siegen, D-57068 Siegen, Germany

ABSTRACT

The structure of Fe(OH_{0.86},OD_{0.14})₂ was refined by applying the Rietveld technique to neutron powder diffraction data collected at 300, 150, and 10 K. The nuclear structure, of the CdI₂ type ($P\overline{3}$ m1) and isostructural with Mg, Ca, Mn, Ni, and β -Co(OH)₂, is maintained over the range of temperatures studied. At 10 K, the magnetic structure is ordered antiferromagnetically, with the magnetic moments aligned in the basal plane. The refined Fe²⁺ magnetic moment magnitude is 3.50(4) μ_{B} . This magnetic structure (space group $P_{2c}\overline{1}$) is unique amongst those encountered in the transition metal dihydroxides, for which the moment is either directed along the *c* axis [β -Co(OH)₂ and Ni(OH)₂], or at least has a considerable component along this direction [Mn(OH)₂]. The dependence of the strength of potential hydrogen bonds with temperature is discussed.