XAFS study of Cu model compounds and Cu²⁺ sorption products on amorphous SiO₂, γ-Al₂O₃, and anatase

SING-FOONG CHEAH,^{1,*} GORDON E. BROWN JR.,^{1,2} AND GEORGE A. PARKS¹

¹Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115, U.S.A. ²Stanford Synchrotron Radiation Laboratory, Stanford, California 94309, U.S.A.

ABSTRACT

The primary objective of this study is to determine the effect of substrate type on the coordination environments of Cu^{2+} adsorbed on amorphous SiO₂, γ -Al₂O₃, and anatase at a surface coverage of approximately 1 µmol/m². We also collected X-ray absorption fine structure (XAFS) data for several Cu²⁺-containing model compounds, including tenorite (^{VI}CuO), spertiniite [^{VI}Cu(OH)₂], dioptase (VI CuSiO₂·H₂O), shattuckite [VI Cu₅(SiO₃)₄(OH)₂], chrysocolla [VI (Cu,Al)₂H₂Si₂O₅ $(OH)_4 \cdot nH_2O]$, and Cu^{2+} acetate monohydrate [^{VI}Cu(CH_3CO_2)_2 \cdot H_2O], for comparison with the sorption sample data. Detailed analysis of these model compounds indicates that the bonding of second neighbors surrounding a central Cu absorber determines whether these second neighbors can be detected by XAFS. The XAFS results of Cu²⁺ sorption samples are consistent with the presence of Jahn-Teller distorted $Cu^{2+}(O,OH)_6$ octahedra, with four equatorial Cu-O bonds (1.95 Å) and two longer axial bonds; the axial Cu-O bonds are difficult to characterize quantitatively by XAFS spectroscopy. Cu²⁺ sorbed on amorphous SiO₂ was found to have Cu second and third neighbors at 2.95 Å, 3.30 Å, and 5.72 Å, but no Cu-Si correlation was detected for these sorption products associated with amorphous SiO₂. Based on XAFS and wet chemical results, it seems likely that a $Cu(OH)_2$ precipitate has formed in the Cu²⁺/amorphous SiO₂ system. Cu²⁺ sorbed on γ -Al₂O₃ is present as a mixture of monomeric, dimeric, and perhaps a small number of oligomeric hydroxo-bridged Cu(O,OH)₆ species with a Cu-Cu distance of approximately 2.95 Å. Sorbed Cu²⁺ on anatase is present predominantly as hydroxo-bridged Cu dimers. At similar sorption densities, Cu²⁺ cluster sizes on amorphous SiO₂ are significantly larger than those on γ -Al₂O₃ or anatase, indicating that the substrate has an important effect on the type of Cu²⁺ sorption complex or precipitates formed.