American Mineralogist, Volume 85, pages 288-291, 2000

Elasticity measurement of silica glass under gas pressure

ICHIRO OHNO,^{1,*} MAKOTO ABE,¹ MASAKI KIMURA,² YOICHI HANAYAMA,³ HITOSHI ODA,⁴ AND ISAO SUZUKI⁴

¹Department of Earth Sciences, Ehime University, Matsuyama, 790-8577 Japan ²Department of Materials Science and Engineering, Ehime University, Matsuyama, 790-8577 Japan ³Department of Mechanical Engineering, Ehime University, Matsuyama, 790-8577 Japan ⁴Department of Earth Sciences, Okayama University, Okayama, 700-8530 Japan

ABSTRACT

The purpose of this paper is to demonstrate that resonant ultrasound spectroscopy (RUS) is applicable to conditions of gas pressure. A sphere of silica glass was measured under pressure of helium gas with a sample-gas-cavity container assembly. The pressure-induced shifts of frequency of six toroidal and two spheroidal modes were observed up to 200 MPa (2 kbar). The sample-gas-container system was analyzed as a three-layered shell structure, and the pressure derivatives of rigidity and bulk moduli; $G'_0 = -3.5$ and $K'_{30} = -6.0$, respectively, were obtained. These results are in good agreement with previous data.