Grüneisen parameter of ϵ -iron up to 300 GPa from in-situ X-ray study

L.S. DUBROVINSKY,^{1,*} S.K. SAXENA,^{1,†} N.A. DUBROVINSKAIA,¹ S. REKHI,¹ AND T. LE BIHAN²

¹Institute of Earth Sciences, Uppsala University, S-752 36 Uppsala, Sweden ²European Synchrotron Radiation Facility, Grenoble 38043, France

ABSTRACT

We show that high-quality powder X-ray diffraction data, collected in diamond anvil cells, provide sufficient information for Rietveld refinement and determination of temperature factors. For the first time using a new method based on combination of thermal equation of state and measured mean-square atomic vibrations of high-pressure ε -Fe phase, we determine Debye temperatures at pressure up to 300 GPa and temperature over 1000 K. We found that the Grüneisen parameter of ε -iron could be described by Anderson's (1967) equation with parameters $\gamma_0 = 1.78(6)$, q = 0.69(10) with fixed $V_0 = 6.73$ cm³/mol.