Theoretical studies on aluminate and sodium aluminate species in models for aqueous solution: Al(OH)₃, Al(OH)₄, and NaAl(OH)₄

J.A. TOSSELL

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, U.S.A.

ABSTRACT

Ab initio quantum mechanical calculations were performed on Al(OH)₃, Al(OH)₄, NaAl(OH)₄ and related species with varying numbers of explicit water molecules to elucidate the structural, spectral and energetic properties of the possible species. We find that $Al(OH)_{2}$ reacts with $H_{2}O$ in the gas-phase with an exoergicity of 24.1 kcal/mol to produce Al(OH)₃H₂O, which has shorter Al-OH distances, larger Al-OH stretching frequencies, and a 15 ppm larger Al NMR shielding than does Al(OH) $_{4}$. When the first hydration spheres of these species are included the Al NMR shieldings becomes very similar, but the O and H NMR parameters and the IR and Raman spectra still show significant differences. The hydration energy of Al(OH)₃H₂O is determined from a "supermolecule" calculation on Al(OH)₃H₂O...6H₂O, whereas that for Al(OH)₄ is obtained using the supermolecule calculation on Al(OH) $_{4...6H_2O}$ plus an evaluation of the electrostatic Born hydration energy of the supermolecule. The calculated energy change for the acid dissociation reaction, Al(OH)₃H₂O...6H₂O \rightarrow Al(OH)₄..6H₂O + H⁺, is +297.9 kcal/mol in the gas phase but only +2.3 kcal/mol in aqueous solution, due to the strong hydration of H⁺ and Al(OH)₄-.6H₂O. Using quantum mechanically calculated entropies for the unhydrated species, $Al(OH)_{3}H_{2}O$ and $Al(OH)_{4}$, plus the experimental hydration entropy of H⁺, the $-T\Delta S$ term for this reaction is calculated as about +11.8 kcal/mol. Adding in calculated zero-point energies and room temperature enthalpy corrections gives a free energy change of +0.5 kcal/mol. Thus pKa for the acid dissociation of $Al(OH)_3H_3O$ is near zero at room T, and Al(OH) $_{4}$ will be dominant except under very acidic conditions.

Properties are also calculated for the bare close-contact ion pair NaAl(OH)₄ and for hydrated forms of both a close-contact and a solvent-separated ion pair, NaAl(OH)₄...10H₂O and NaAl(OH)₄...11H₂O. In accord with previous calculations on silicate anions and ion pairs, formation of an unhydrated close-contact ion pair increases the shielding of the Al in Al(OH)₄, while reducing the Al-O symmetric stretching frequency. The calculated energy change at 298 K in aqueous solution for the ion pair formation reaction,

Na...6H₂O⁺ + Al(OH) $_{4}^{-}$.6H₂O \rightarrow NaAl(OH)₄...11H₂O + H₂O,

is +17.6 kcal/mol, close to the value determined experimentally. After addition of calculated zeropoint energies, enthalpy corrections, and calculated entropy changes we obtain a ΔG value of +1.7 kcal/mol for this reaction, giving a log K around -1, consistent with significant ion pair formation. The NaAl(OH)₄...11H₂O species is a solvent-separated ion pair with full hydration of both its Na⁺ and Al(OH)₄...11H₂O species is a solvent-separated ion pair with full hydration of both its Na⁺ and Al(OH)₄...11H₂O, whereas its Na NMR shielding is about 5 ppm smaller than that of Na(OH₂)₆, although its Na electric field gradient (and consequently its line-width) are larger. Thus it appears that Na NMR may be the best technique for characterizing this ion pair.