## Compression of CaTiO<sub>3</sub> and CaGeO<sub>3</sub> perovskites

NANCY L. ROSS<sup>1,\*</sup> AND ROSS J. ANGEL<sup>2</sup>

<sup>1</sup>Department of Geological Sciences, University College London, Gower Street, London, WC1E 6BT, U.K. <sup>2</sup>Bayerisches Geoinstitut, Universität Bayreuth, D95440 Bayreuth, Germany

## Abstract

High-pressure single-crystal X-ray diffraction measurements of CaTiO<sub>3</sub> and CaGeO<sub>3</sub> perovskite have been carried out to 9.7 and 8.6 GPa, respectively, at room temperature. Fitting a third-order Birch-Murnaghan equation-of-state to the P-V data yields values of  $V_0 =$ 223.764  $\pm$  0.017 Å<sup>3</sup>,  $K_{T0} = 170.9 \pm 1.4$  GPa, and  $K' = \partial K/\partial P = 6.6 \pm 0.3$  for CaTiO<sub>3</sub> and  $V_0 = 206.490 \pm 0.017$  Å<sup>3</sup>,  $K_{T0} = 194.0 \pm 2.1$  GPa, and  $K' = 6.1 \pm 0.5$  for CaGeO<sub>3</sub>. A similar analysis of the axial compressibilities shows that the degree of anisotropic compression in both perovskites is less than 10%. In CaTiO<sub>3</sub> the a and b axes have similar compressibilities ( $K_a = 168.7 \pm 2.1$  GPa,  $K_b = 168.3 \pm 1.9$  GPa) whereas the c axis is the least compressible ( $K_c = 175.3 \pm 1.5$  GPa). In CaGeO<sub>3</sub>, the b axis ( $K_b = 188 \pm 4$  GPa) and the a axis ( $K_a = 195 \pm 5$  GPa) are more compressible than the c axis ( $K_c = 204 \pm 3$  GPa). The variations with pressure of all axes show significant curvature with increasing pressure and have K' values ranging from 5.7  $\pm$  0.5 to 7.0  $\pm$  0.4 in CaTiO<sub>3</sub> and 5.0  $\pm$  0.9 to 6.9  $\pm$ 1.2 in CaGeO<sub>3</sub>. No phase transition was detected. There is evidence, however, that in CaGeO<sub>3</sub> the tetragonal to orthorhombic spontaneous strain decreases slightly with pressure which may indicate that a phase transition occurs at a pressure above 10 GPa. Elasticity trends of Ca-perovskites relating bulk modulus and molar volume are independent of both the degree of distortion from cubic symmetry and the symmetry of the structure.