Elastic wave velocities of Mg₃Al₂Si₃O₁₂-pyrope garnet to 10 GPa

GANGLIN CHEN,^{1,*} JOSEPH A. COOKE JR.,² GABRIEL D. GWANMESIA,^{1,3} AND ROBERT C. LIEBERMANN^{2,†}

¹Center for High Pressure Research, and Mineral Physics Institute, State University of New York at Stony Brook, Stony Brook, New York 11794-2100, U.S.A. ²Center for High-Pressure Research, and Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York 11794-2100, U.S.A. ³Department of Physics and Pre-Engineering, Delaware State University, Dover, Delaware 19901, U.S.A.

Abstract

Elastic wave velocities of $Mg_3Al_2Si_3O_{12}$ pyrope garnet were measured to 10 GPa at ambient temperature, using ultrasonic interferometry in a 1000 ton split-cylinder, multianvil apparatus (USCA-1000). The sample used in the ultrasonic measurements was a polycrystalline specimen hot-pressed at 5 GPa and 1350 °C in a 2000 ton uniaxial splitsphere apparatus (USSA-2000) from a homogeneous glass of pyrope composition. Special *P-T* paths used during synthesis minimized effects of decompressing and thermal cracking; the bulk density of the sample was indistinguishable from the X-ray density. The elastic wave velocities measured at the ambient condition agree with the Hashin-Shtrikman averages of the single crystal values within the mutual uncertainties. The high-pressure experiments yielded the elastic moduli and their pressure derivatives (finite strain fit) for the shear modulus $G_0 = 92 \pm 1$ GPa, $G_0' = (\partial G/\partial P)_T = 1.6 \pm 0.2$ and for the longitudinal modulus $L_0 = 294 \pm 1$ GPa, $L_0' = (\partial L/\partial P)_T = 7.4 \pm 0.5$, $(L = K_8 + 4/3G)$, from which the bulk modulus $K_0 = 171 \pm 2$ GPa, $K_0' = (\partial K_s / \partial P)_T = 5.3 \pm 0.4$ was calculated. The pressure derivative for the shear modulus of pyrope did not differ from those of natural pyrope-almandine-grossular garnets. For the bulk modulus, the pressure derivative for pyrope agreed with that for pyrope-almandine but was substantially higher (25%) than that for the Ca-bearing garnet. In the pyrope-majorite series, K_0' remained constant, whereas G_0' increased by 25 for 38% majorite content.