Sodium heptasilicate: A high-pressure silicate with six-membered rings of tetrahedra interconnected by SiO₆ octahedra: (Na₈Si[Si₆O₁₈])

MICHAEL E. FLEET*

Department of Earth Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada

Abstract

Crystals of sodium heptasilicate (Na₈Si₇O₁₈) have been grown at 9 GPa, 1000 °C using the MA6/8 superpress at Edmonton. The X-ray structure was determined at room pressure (R = 5.8%). Sodium heptasilicate is trigonal with a = 7.180(1) Å, $\alpha = 87.26(1)^\circ$, space group Rbu671, Z = 1, and $D_x = 3.009$ g/cm³. The structure contains isolated six-membered UDUDUD rings of SiO₄ tetrahedra interconnected by SiO₆ octahedra with ^[6]Si:^[4]Si = 1:6, giving a structural formula of Na₈Si[Si₆O₁₈]. The mixed ^[4]Si,^[6]Si framework is undersaturated because only one of the non-bridging O atoms in the SiO₄ tetrahedron is shared with the SiO₆ octahedron. Six Na cations per formula unit (pfu) are in eightfold coordination with O, and two are in a distorted and compressed octahedral coordination. Sodium heptasilicate belongs to the homologous series Na_{2k}Na_{2(m-k}Si_{m-k}[Si_{n-m+k}O_{2n+m}], with k < m < nand $(n - m + k) \ge (3/2)(m - k)$. The X-ray structure is consistent with microprobe analysis data and revises the earlier characterization of this phase as ζ -Na₂Si₂O₅. The sodium heptasilicate structure does not fully relax with decompression and undergoes incipient displacive transformation ($R\overline{3}m \rightarrow R\overline{3}$) with minor positional disorder of Na cations.