Reversed determination of the reaction: Phlogopite + quartz = enstatite + potassium feldspar + H_2O in the ranges 750–875 °C and 2–12 kbar at low H_2O activity with concentrated KCl solutions

L.Y. ARANOVICH* AND R.C. NEWTON

Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637, U.S.A.

Abstract

The reaction of phlogopite plus quartz to enstatite, potassium feldspar, and aqueous fluid in the system KMASH-KCl was reversed at 2–12 kbar and 750–875 °C and at low H_2O activities by reversal of the H₂O content of concentrated KCl solutions equilibrated with product and reactant assemblages. Synthetic 1M phlogopite $[KMg_3AlSi_3O_{10}(OH)_2]$ and enstatite (MgSiO₃) maintained end-member stoichiometry throughout, and the potassium feldspar (KAlSi₃ O_8) was a high sanidine, based on unit-cell refinements. The broad P-T- $X_{\rm H,O}$ and narrow reversal ranges of this investigation were possible because of the low and well-defined H2O activity, yet powerful fluxing action, of concentrated KCl solutions. Solubility experiments on quartz and potassium feldspar in our $P-T-X_{H,O}$ range showed that fluid-phase solution of silicate constituents was too small to have affected the H_2O activity in the experiments. The new determinations are more definitive than previous work done at very low pressures with pure H_2O or in CO_2 - H_2O mixtures. They establish the standard free energy of the reaction in the experimental range with an uncertainty of about 1 kJ and indicate that the synthetic phlogopite has maximal (Al-Si) disorder under our experimental conditions. The standard enthalpy of reaction at 298 K is 106.54 \pm 2.0 kJ (2\sigma) based on our reversals, a value 6 kJ less positive than that currently used by many workers in calculations of biotite stability and H₂O activity in the petrogenesis of high-grade metamorphic rocks. The lower thermal stability that we find for phlogopite requires revision in estimates of H₂O activity of granulite facies metamorphism: typical values for the natural assemblage orthopyroxene-biotite-garnet-potassium feldspar-plagioclase-quartz at deepcrustal metamorphic conditions (750-850 °C, 5-10 kbar) are $a_{\rm H,O} = 0.4-0.6$ compared with values of 0.15–0.30 which would have been estimated with previously available data on phlogopite stability. An important consequence of the expanded H₂O activity range of granulites is that alkali chloride solutions of only moderate concentration [$X_{H,O} = 0.5-0.7$], which are the values observed in actual fluid inclusions in many kinds of igneous and metamorphic rocks, are a feasible alternative to the vapor-absent conditions considered necessary by many workers based on previous low estimates of $a_{H,0}$. Participation of concentrated brines in deep-crust/upper mantle metamorphic processes enables alkali metasomatism and other kinds of chemical transport in an aqueous fluid without large-scale melting of the crust.