High form of pentlandite and its thermal stability

ASAHIKO SUGAKI¹ AND ARASHI KITAKAZE²

¹4-30-503, Kadan, Aoba-ku, Sendai 980, Japan

²Institute of Mineralogy, Petrology and Economic Geology, Faculty of Science, Tohoku University, Sendai 980-77, Japan

Abstract

The high-temperature form of pentlandite (Fe_{4.5}Ni_{4.5}S₈) was found to be stable between 584 \pm 3 and 865 \pm 3 °C, breaking down into monosulfide solid solution and liquid at the later temperature. The phase is unquenchable and always displays the X-ray pattern of pentlandite (low form) at room temperature. High-temperature X-ray diffraction demonstrated that the high form has a primitive cubic cell with a = 5.189 Å (620 °C) corresponding to a/2 of pentlandite. The high-low inversion is reversible, accompanied by a large latent heat. It is thought to be order-disorder in character. The transition temperature falls with decreasing S content. The high form of pentlandite has a limited solid solution from Fe_{5.07}Ni_{3.93}S_{7.85} to Fe_{3.61}Ni_{5.39}S_{7.85} at 850 °C. However its solid solution extends rapidly toward Ni_{3 $\pm x$}S₂ in the Ni-S join with decreasing temperature. High-form pentlandite with Fe = Ni in atomic percent crystallizes first by a pseudoperitectic reaction between monosulfide solid solution and liquid. The high form (Fe = Ni) crystallized from the liquid always has the metal-rich (S-poor) composition in the solid solution at each temperature and coexists with taenite γ (Fe,Ni) below 746 \pm 3 °C. This metal-rich high-form Fe_{4.5}Ni_{4.5}S_{7.4} breaks down into pentlandite and γ (Fe,Ni) at 584 \pm 3 °C (pseudoeutectoid).

These results suggest that in geological processes, such as the formation of Ni-Cu ore deposits, pentlandite can crystallize as the high form from liquid (sulfide magma) at the comparatively high temperatures around 800 $^{\circ}$ C.