A convenient method for measuring ferric iron in magnesiowüstite (MgO-Fe_{1-x}O)

DAVID P. DOBSON,^{1,*} NEIL S. COHEN,² QUENTIN A. PANKHURST,² AND JOHN P. BRODHOLT¹

¹ Department of Geological Sciences, University College London, Gower Street, London WCE6BT, U.K.

² Department of Physics and Astronomy, University College London, Gower Street, London WCE6BT, U.K.

ABSTRACT

We present a new oxybarometer for magnesiowüstite-bearing systems, which is easily applied using widely available techniques. A scale relating the proportion of Fe^{3+} [$\alpha = Fe^{3+}/(Fe^{3+} + Fe^{2+})$] to the position of the (220) reflection and total Fe (y) in magnesiowüstites (Mg_{1-y}·Fe_y)_{1-x}O has been derived from measured values in samples equilibrated at various oxygen fugacities:

 $\alpha = 13.0047 - 39.4829f + 40.0540f^2 - 13.5701f^3(\pm 0.007 + 0.09\alpha),$

 $\mathbf{f} = (d_{220} - 1.4890) / (0.0510y + 0.0206y^2) (\pm 0.0001).$

Previously established partition coefficients can then be used to relate estimated Fe³⁺ content to equilibrium oxygen fugacity (f_{o_2}) in the composition range 0 < y < 0.2. Equilibrium oxygen fugacities of log $f_{o_2} \leq -1.7$ can be estimated to ± 0.5 log units using just X-ray powder diffraction and electron microprobe analytical techniques.