American Mineralogist, Volume 82, pages 36-43, 1997

Coordination of Ti^{4+} in silicate glasses: A high-resolution XANES spectroscopy study at the Ti K edge

FRANÇOIS FARGES

Laboratoire de physique et mécanique des géomatériaux, Université de Marne-la-vallée, URA CNRS 734 and LURE, (and Stanford University) 2 rue de la butte verte, 93166 Noisy le Grand cedex, France

Abstract

The coordination environment of Ti in eight Ti-bearing glasses of the $Na_2Si_4O_9-Na_2Ti_4O_9$ join (NTS) and in six ATY2 glasses ($A_2O\cdot TiO_2\cdot 2YO_2$, with A = Na, K, or Rb and Y = Si or Ge) was determined using high-resolution, X-ray absorption near-edge structure (XANES) spectroscopy at the Ti K edge in ambient conditions.

Fivefold-coordinated Ti (^[5]Ti) is the dominant Ti species ($\geq 50 \pm 10\%$ of the total Ti) in all the glasses studied. Sixfold-coordinated Ti was detected mostly in sodic glasses (NTS, NTS2, NTG2), and it increases with TiO₂ content (as high as 40 ± 10% of the total of Ti in the most TiO₂-rich NTS glasses) and in the order Si < Ge. Fourfold-coordinated Ti was detected only in nonsodic ATY2 glasses, and its content increases in the order Na < K < Rb and Ge < Si. Fivefold-coordinated Ti⁴⁺ is probably present as square pyramidal, titanyl-bearing moieties, or (^[5]Ti=O)O₄.

A synthesis of Ti⁴⁺ coordination for oxide glasses derived using direct methods (X-ray absorption and neutron scattering) can be used, for instance, to help in the interpretation of Raman scattering spectra collected for Ti-bearing glasses and to estimate NBO/T ratios better for titanosilicate glasses and melts.