Melting phase equilibrium relations in the MgSiO₃-SiO₂ system under high pressures

TAKUYA MORIGUTI^{1,*}, YUSUKE YACHI¹, AKIRA YONEDA^{1,2}, AND ELJI ITO¹

¹Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan ²Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

ABSTRACT

Melting relations in the MgSiO₃-SiO₂ system have been investigated at 13.5 GPa using a Kawaitype multi-anvil apparatus. The system displays eutectic melting with the eutectic point located at SiO₂/(SiO₂+MgO) = 0.61 (in mol; which is denoted by X_{si} hereafter) and at 2350 ± 50 °C. Taking into account the eutectic compositions at lower pressures reported in previous studies, i.e., 0.556 at 1 GPa (Hudon et al. 2005) and 0.60 at 5 GPa (Dalton and Presnall 1997), the eutectic composition is slightly enriched in SiO₂ with increasing pressure. The silica-rich eutectic composition is not consistent with the present peridotitic mantle composition ($X_{si} = 0.43$). Considering Si incorporation into iron alloys in a magma ocean, however, mass-balance calculations based on an E-chondrite model demonstrate that the silicate magma ocean could have X_{si} consistent with the present peridotitic mantle.

Keywords: Melting, high pressure, MgSiO₃-SiO₂ system, mantle, enstatite chondrite model, multianvil, pressure calibration, thermal expansion