Oxygen-fugacity evolution of magmatic Ni-Cu sulfide deposits in East Kunlun: Insights from Cr-spinel composition

LIHUI JIA^{1,*}, YI CHEN^{1,2,*}, BIN SU¹, QIAN MAO¹, AND DI ZHANG¹

¹State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China ²University of Chinese Academy of Sciences, Beijing 100049, China

ABSTRACT

In this study, we use Cr-spinel as an efficient indicator to evaluate the oxygen fugacity evolution of the Xiarihamu Ni-Cu deposit and the Shitoukengde non-mineralized intrusion. Oxygen fugacity is calculated using an olivine-spinel oxybarometer, with spinel Fe³⁺/ΣFe ratios determined by a secondary standard calibration method using an electron microprobe. Cr-spinel Fe³⁺/∑Fe ratios of the Xiarihamu Ni-Cu deposit vary from 0.32 ± 0.09 to 0.12 ± 0.01 , corresponding to magma f_{O2} values ranging from $\Delta QFM+2.2\pm1.0$ to $\Delta QFM-0.6\pm0.2$. By contrast, those of the Shitoukengde mafic-ultramafic intrusion increase from 0.07 ± 0.02 to 0.23 ± 0.04 , corresponding to magma f_0 , varying from $\Delta QFM-1.3 \pm 0.3$ to $\triangle QFM+1.0\pm0.5$. A positive correlation between f_{O2} and Cr-spinel Fe³⁺/ ΣFe ratios suggests that the Cr-spinel Fe³⁺/ Σ Fe ratios can be used as an indicator for magma f_{Ω} . The high f_{Ω} (QFM+2.2) of the harzburgite in the Xiarihamu Ni-Cu deposit suggests that the most primitive magma was characterized by relatively oxidized conditions, and then became reduced during magmatic evolution, causing S saturation and sulfide segregation to form the Xiarihamu Ni-Cu deposit. The evolution trend of the magma f_0 , can be reasonably explained by metasomatism in mantle source by subduction-related fluid and addition of external reduced sulfur from country gneisses (1.08-1.14 wt% S) during crustal processes. Conversely, the primitive magma of the Shitoukengde intrusion was reduced and gradually became oxidized (from QFM-1.3 to QFM+1.0) during crystallization. Fractional crystallization of large amounts of Cr-spinel can reasonably explain the increasing magma f_{Ω} , during magmatic evolution, which would hamper sulfide precipitation in the Shitoukengde intrusion. We propose that the temporal evolution of oxygen fugacity of the mantle-derived magma can be used as one of the indicators for evaluating metallogenic potential of Ni-Cu sulfide deposits and the reduction processes from mantle source to shallow crust play an important role in the genesis of magmatic Ni-Cu sulfide deposits.

Keywords: Oxygen fugacity, Cr-spinel, ultramafic rocks, Ni-Cu sulfide deposit, East Kunlun