American Mineralogist, Volume 107, pages 1174–1180, 2022

Nitscheite, (NH₄)₂[(UO₂)₂(SO₄)₃(H₂O)₂]·3H₂O, a new mineral with an unusual uranyl-sulfate sheet

ANTHONY R. KAMPF^{1,*}, TRAVIS A. OLDS^{2,}[†], JAKUB PLÁŠIL³, BARBARA P. NASH⁴, AND JOE MARTY¹

¹Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.
²Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213, U.S.A.
³Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
⁴Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, U.S.A.

ABSTRACT

Nitscheite (IMA2020-078), (NH₄)₂[(UO₂)₂(SO₄)₃(H₂O)₂]·3H₂O, is a new mineral species from the Green Lizard mine, Red Canyon, San Juan County, Utah, U.S.A. It is a secondary phase found in association with chinleite-(Y), gypsum, pyrite, and Co-rich rietveldite. Nitscheite occurs in subparallel and divergent intergrowths of yellow prisms, up to about 0.3 mm in length. Crystals are elongated on [101] and exhibit the forms {100}, {010}, {001}, and {111}. The mineral is transparent with vitreous luster and very pale-yellow streak. It exhibits bright green fluorescence under a 405 nm laser. The Mohs hardness is ~2. The mineral has brittle tenacity, curved fracture, and one good cleavage on {010}. The measured density is 3.30(2) g·cm⁻³. The mineral is easily soluble in H₂O at room temperature. The mineral is optically biaxial (–), $\alpha = 1.560(2)$, $\beta = 1.582(2)$, $\gamma = 1.583(2)$ (white light); $2V_{meas} = 17(1)^{\circ}$; no dispersion; orientation $X = \mathbf{b}$, $Z \approx [101]$; pleochroism X colorless, Y and Z yellow; $X < Y \approx Z$. Electron microprobe analysis provided the empirical formula (NH₄)_{1.99}U_{2.00}S_{3.00}O₂₁H_{10.01}. Nitscheite is monoclinic, $P2_1/n$, a = 17.3982(4), b = 12.8552(3), c = 17.4054(12) Å, $\beta = 96.649(7)^{\circ}$, V = 3866.7(3) Å³, and Z = 8. The structure ($R_1 = 0.0329$ for 4547 $I > 3\sigma I$ reflections) contains [(UO₂)₂(SO₄)₃(H₂O)₂]²⁻ uranyl-sulfate sheets, which are unique among minerals, with NH₄ and H₂O groups between the sheets.

Keywords: Nitscheite, new mineral, uranyl-sulfate sheet, crystal structure, Raman spectroscopy, Green Lizard mine, Red Canyon, Utah