Oxygen isotope heterogeneity of olivine crystals in orogenic peridotites from Songshugou, North Qinling Orogen: Petrogenesis and geodynamic implications

HONG YU^{1,*}, HONG-FU ZHANG^{2,3}, HAIBO ZOU⁴, AND JI-FENG XU¹

¹State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China

²State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China ³State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China ⁴Department of Geosciences, Auburn University, Auburn, Alabama 36849, U.S.A.

ABSTRACT

Olivine grains from Songshugou mylonitized peridotite massif record δ^{18} O both lower and higher than in pristine mantle samples in North Qinling Orogen, Central China. Olivines from dunites exhibit large variations in δ^{18} O (4.03–7.07‰), and some porphyroclasts display negative correlations between δ^{18} O and forsterite content {Fo; [100×Mg/(Mg+Fe²⁺)]}. The porphyroclast cores have low- δ^{18} O values, indicating that they formed in the oceanic lithospheric mantle prior to subduction. We attribute low- δ^{18} O values to seawater-peridotite interaction under high-temperature conditions. The porphyroclast rims and small olivines exhibit high- δ^{18} O values. These features suggest that high- δ^{18} O olivines formed during mylonitization in the exhumation process. Olivines reacted with ¹⁸O-rich melt/fluids released from subducted altered oceanic basalts and continental sediments at low temperature (<610–680 °C). The ¹⁸O-rich melt/fluids selectively affected porphyroclast rims and small olivine grains. Unlike the olivines in the dunites, the olivines and orthopyroxenes in the harzburgites show limited variations in δ^{18} O (4.21–5.45‰ and 5.5–5.8‰, respectively), due to orthopyroxene exchange with melt/fluid at a slower rate than the coexisting olivine. The preservation of the low- δ^{18} O signature in olivines indicates a short residence time (<20 Ma) for subducting peridotites to mantle depths.

Keywords: Oxygen isotope heterogeneity, olivine, orthopyroxene, Songshugou peridotites, North Qinling Orogen