Chukochenite, (Li_{0.5}Al_{0.5})Al₂O₄, a new lithium oxyspinel mineral from the Xianghualing skarn, Hunan Province, China

CAN RAO^{1,*}, XIANGPING GU², RUCHENG WANG³, QUNKE XIA^{1,†}, YUANFENG CAI^{3,‡}, CHUANWAN DONG¹, FRÉDÉRIC HATERT⁴, AND YANTAO HAO¹

¹Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China

²School of Earth Sciences and Info-physics, Central South University, Changsha, 410083, China

³State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210046, China ⁴Laboratoire de Minéralogie, B18, Université de Liège, B-4000 Liège, Belgium

ABSTRACT

Province, southern China. It occurs as subhedral to euhedral crystals up to 200 µm across in the green rock of Xianghualing skarn, closely associated with fluorite, phlogopite, chrysoberyl, margarite, chlorite, ferronigerite-2N1S, and zinconigerite-2N1S. The crystals are colorless and transparent with a vitreous luster. Chukochenite is brittle with irregular fracture, has a Mohs hardness of 8, and shows light red fluorescence under 253.7 nm UV radiation and light green fluorescence under 365 nm UV radiation. The calculated density is 3.771 g/cm³. Chukochenite is optically biaxial (-) with $\alpha = 1.79(2)$, $\beta = 1.82(2)$, and $\gamma = 1.83(2)$ (589 nm). The calculated 2V is 60°, with the optical orientations X, Y, and Z parallel to the crystallographic a, b, and c, respectively. Electron microprobe analysis (Li by LA-ICP-MS) yielded in wt% Al₂O₃ 80.70, Fe₂O₃ 8.16, Li₂O 3.68, ZnO 3.25, MnO 2.49, MgO 1.70, Na₂O 0.11, CaO 0.08, TiO₂ 0.02, K₂O 0.01, and Cr₂O₃ 0.01 (total 100.24 wt%), giving an empirical formula $[(Li_{0.355}Al_{0.138}Na_{0.005}Ca_{0.002})_{\Sigma_0}(Al_{0.145}Fe_{1.347}^{+3}Mg_{0.061}Zn_{0.058}Mn_{0.051}Si_{0.001})_{\Sigma_0.463}]Al_2O_4$ on a basis of 4 O atoms per formula unit. Chukochenite is orthorhombic, Imma, a = 5.659 (1), b = 16.898 (1), c =7.994 (1) Å, V = 764.46 (8) Å³, and Z = 12. The nine strongest lines of powder XRD [d in Å (I) (hkl)] are: 2.405 (53) (231); 1.996 (29) (260); 1.535 (77) (303); 1.413 (100) (264); 1.260 (52) (2 12 0); 1.068 (36) (1 13 4); 1.039 (61) (503); 0.999 (59) (008); and 0.942 (35) (3 13 4). Chukochenite has a framework structure of spinel with low symmetry (orthorhombic Imma) due to the ordering of Li cations over octahedrally coordinated sites, which has not been previously reported for synthetic ($Li_0 Al_{0.5}$) Al₂O₄. This structure type is based on a framework of AlO₄ tetrahedra, AlO₆, and LiO₆ octahedra. AlO₆ edge-sharing octahedra form chains along the a axis. AlO₆ octahedra and LiO₆ octahedra in a 2:1 ratio share edges, forming octahedral chains along b. These octahedral chains are connected by AlO_4 tetrahedra and each corner of an AlO_4 tetrahedron shares with three AlO_6 octahedra or two AlO_6 + one LiO_6 octahedra. The discovery of chukochenite adds a new perspective on the cation ordering and the mechanism of luminescence and magnetism in $(Li_{0.5}Al_{0.5})Al_2O_4$.

Keywords: Chukochenite, new mineral, (Li_{0.5}Al_{0.5})Al₂O₄, crystal structure, optical property, XRD, EPMA, Raman spectroscopy; Lithium, beryllium, and boron: Quintessentially crustal