Kinetics of dehydrogenation of riebeckite Na₂Fe₂³⁺Fe₂²⁺Si₈O₂₂(OH)₂: An HT-FTIR study

GIANCARLO DELLA VENTURA^{1,2,3,*}, FRANCESCO RADICA^{1,2}, FEDERICO GALDENZI^{1,2}, Umberto Susta¹, Gianfelice Cinque⁴, Mariangela Cestelli-Guidi², Boriana Mihailova⁵, and Augusto Marcelli^{2,6}

¹Dipartimento di Scienze, Università di Roma Tre, L.S. Leonardo Murialdo 1, 00146, Rome, Italy ²INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, Frascati 00044 Rome, Italy ³NGV, Via di Vigna Murata 605, 00143, Rome, Italy

⁴Diamond Light Source Ltd, Harwell Science and innovation Campus, Chilton-Didcot, Oxfordshire OX11 0DE, U.K. ⁵FB Geowissenschaften, Universität Hamburg, Grindelallee 48, 20146 Hamburg, Germany ⁶Rome International Centre for Material Science Superstripes, RICMASS, Via dei Sabelli 119A, 00185, Rome, Italy

ABSTRACT

In this work, we address the kinetics of dehydrogenation occurring at high temperatures (HT) in riebeckite, a sodic amphibole with the ideal composition $Na_2Fe_2^{3+}Fe_2^{3+}Si_8O_{22}(OH)_2$. We performed isothermal experiments on both powders and single-crystals up to 560 °C and monitored the O-H stretching signal by Fourier transform infrared (FTIR) spectroscopy. Single-crystals show an initial increase in IR absorption intensity due to increasing vibrational amplitudes of the O-H bond stretching, not observed for powders. The OH-intensities vs. time were fitted using the formalism for first-order reactions. The calculated activation energies for H⁺ diffusion in riebeckite are 159 ± 15 kJ/mol for powders and 216 ± 20 kJ/mol for single crystals, respectively. The exponential factor m in the Avrami-Erofeev equation obtained for crystals ranges between 1.02 and 1.31, suggesting that, unlike powders, the dehydration process in crystals is not a purely first-order reaction. This implies that a second energy barrier must be considered, i.e., diffusion of H⁺ through the crystal. FTIR imaging showed that H⁺ diffusion occurs mainly perpendicular to the silicate double-chain. Our results confirm that the release of H⁺ from riebeckite occurs after the irreversible Fe²⁺-to-Fe³⁺ exchange, thus at temperatures >550 °C. To be effective, the process needs the presence of external oxygen that, by interacting with H⁺ at the crystal surface, triggers the release of H₂O molecules. This implies that oxidizing conditions are required for the amphibole to be an efficient water source at depth.

Keywords: Riebeckite, HT-FTIR spectroscopy, FTIR imaging, Fe-oxidation, dehydration kinetics, activation energy