American Mineralogist, Volume 107, pages 405-412, 2022

Ferromagnesian jeffbenite synthesized at 15 GPa and 1200 °C

JOSEPH R. SMYTH^{1,*}, FEI WANG², E. ERCAN ALP³, AARON S. BELL¹, ESTHER S. POSNER^{4,†}, AND STEVEN D. JACOBSEN²

¹Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, U.S.A.
²Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois 60208, U.S.A.
³Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
⁴Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

ABSTRACT

Single crystals of Al-free, ferromagnesian jeffbenite up to 200 µm in size have been synthesized at 15 GPa and 1200 °C in a 1200 tonne multi-anvil press from a starting composition in the forsteritefayalite-magnetite-water system. This phase has the approximate formula Mg_{2.62}Fe²⁺_{1.63}Si_{2.88}O₁₂ and is observed to coexist with a Ca-free clinopyroxene plus what appears to be quenched melt. The crystal structure has been refined from single-crystal X-ray diffraction data and is similar to that determined for natural Al-bearing jeffbenite, Mg₃Al₂Si₃O₁₂, reported from inclusions in superdeep diamonds. The structure is a tetragonal orthosilicate in space group $I\overline{4}2d$ with a = 6.6449(4) Å, c = 18.4823(14) Å, and is structurally more closely related to zircon than to garnet. The T2 site is larger than T1, shares an edge with the M2 octahedron, and incorporates significant Fe³⁺. Because of the tetrahedral incorporation of trivalent cations, jeffbenite appears to be compositionally distinct from garnet. Previous speculations that the phase may only occur as a retrograde decompression product from bridgmanite are not supported by its direct synthesis under transition zone conditions. The phase has a calculated density of 3.93 g/cm³, which is indistinguishable from a garnet of comparable composition, and is a possible component in the mantle transition zone under oxidizing conditions or with Al-rich compositions.

Keywords: Jeffbenite, tetragonal almandine pyrope phase (TAPP), super deep diamonds, diamond inclusions