Chemical variability in vyacheslavite, U(PO₄)(OH): Crystal-chemical implications for hydrous and hydroxylated U⁴⁺, Ca, and REE phosphates

GWLADYS STECIUK¹, RADEK ŠKODA², VERONIKA DILLINGEROVÁ^{2,3}, AND JAKUB PLÁŠIL^{1,*}

¹Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic

²Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic ³Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

ABSTRACT

Particularly interesting chemical variability in the U⁴⁺ phosphate mineral vyacheslavite from Menzenschwand (Germany) has been discovered and investigated by means of electrondiffraction and micro-chemical methods. Suggested variability comprises the elevated contents of calcium and rare-earth elements (REEs or Ln). Based on the crystal structure refinement from 3D electron diffraction data, the structural formula of Ca-rich vyacheslavite studied is $U_{0.895}Ca_{0.105}$ $PO_4(OH)_{0.790}(H_2O)_{0.210}$. In general, such compositional variability involving Ca^{2+} can be expressed as U_{1-x} Ca_xPO₄(OH)₁₋₂,(H₂O)_{2x}. Based on detailed electron-probe microanalysis, regions extremely enriched in Y and Ln have been discovered, characterized by the contents up to 11 wt% of Y_2O_3 and ~4.5 wt% of Ln_2O_3 . In addition to the above-mentioned substitution mechanism, substitution involving Y and Lncan be expressed as $U^{4+} + OH^- \rightarrow REE^{3+} + H_2O$. Although the structure refinement has not provided direct evidence of H₂O in the studied nano-fragments of vyacheslavite, the presence of H₂O and its substitution at OH⁻ sites is a reasonable and necessary charge-balancing mechanism. One H atom site was located during structure refinements; however, an additional H-site is only partially occupied and thus was not revealed from the refinement despite the high-quality data. Substitutional trends observed here suggest possible miscibility or structural relationship between vyacheslavite, rhabdophane, and ningyoite that may depend strongly on OH/H₂O content, considering that all crystallize under similar paragenetic conditions.

Keywords: Vyacheslavite, crystal structure, chemical composition, electron-diffraction tomography, miscibility, rhabdophane, uranium deposits