Thermoelastic properties of zircon: Implications for geothermobarometry

ALIX M. EHLERS¹, GABRIELE ZAFFIRO², ROSS J. ANGEL^{3,*}, TIZIANA BOFFA-BALLARAN⁴, MICHAEL A. CARPENTER⁵, MATTEO ALVARO^{2,†}, AND NANCY L. ROSS^{1,†}

¹Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, U.S.A. ²Department of Earth and Environmental Sciences, University of Pavia, Via A. Ferrata, 1 27100 Pavia, Italy ³IGG CNR, Via Giovanni Gradenigo, 6, 35131 Padova, Italy

⁴Bayerisches Geoinstitut, Universität Bayreuth Universitätsstraße 30, 95447 Bayreuth, Germany ⁵Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.

ABSTRACT

A thermal-pressure equation of state has been determined for zircon (ZrSiO₄) that characterizes its thermoelastic behavior at metamorphic conditions. New pressure-volume (*P-V*) data from a "Mud Tank" zircon have been collected from 1 bar to 8.47(1) GPa using X-ray diffraction, and elastic moduli were measured from room temperature up to 1172 K by resonance ultrasound spectroscopy. These data were fitted simultaneously with temperature-volume (*T-V*) data from the literature in EosFit7c using a new scaling technique. The parameters of a third-order Birch-Murnaghan EoS with a Mie-Grüneisen-Debye model for thermal pressure have compressional EoS parameters $K_{0T} = 224.5(1.2)$ GPa, $K'_{0T} = 4.90(31)$ with a fixed initial molar volume $V_0 = 39.26$ cm³/mol and thermal parameters γ_0 = 0.868(15), q = 2.37(80), and $\Theta_D = 848(38)$ K. EoS parameters that describe the variation of unit-cell parameters with pressure and temperature were determined using an isothermal-type EoS. This new EoS confirms that zircons are stiffer than garnets and exhibit a much lower thermal expansion. This results in steep isomekes between zircon and garnets, which makes zircon trapped as inclusions in garnets at metamorphic conditions a good piezothermometer.

Keywords: Zircon, equation of state, piezobarometry, EosFit