Johnkoivulaite, Cs(Be₂B)Mg₂Si₆O₁₈, a new mineral of the beryl group from the gem deposits of Mogok, Myanmar

AARON C. PALKE^{1,*}, LAWRENCE M. HENLING², CHI MA^{3,†}, GEORGE R. ROSSMAN³, ZIYIN SUN¹, NATHAN RENFRO¹, ANTHONY R. KAMPF^{4,}[‡], KYAW THU⁵, NAY MYO⁶, PATCHAREE WONGRAWANG⁷, AND VARARUT WEERAMONKHONLERT⁷

¹Gemological Institute of America, Carlsbad, California 92008, U.S.A.
²Beckman Institute, California Institute of Technology, Pasadena, California 91125, U.S.A.
³Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.
⁴Mineral Sciences Department, Natural History Museum of Los Angeles County, Los Angeles, California 90007, U.S.A.
⁵S Gemmological Institute, Yangon 11201, Myanmar
⁶Greatland Gems and Jewelry, Mogok 11101, Myanmar
⁷Gemological Institute of America, Bangkok 10500, Thailand

ABSTRACT

A new mineral of the beryl group, johnkoivulaite, $Cs(Be_2B)Mg_2Si_6O_{18}$, was recovered from the gem gravels in the Pein Pyit area of the Mogok region in Myanmar. Thus far, only a single crystal has been identified. It has dimensions of about $5.8 \times 5.7 \times 5.5$ mm. This specimen has an irregular shape but still has discernible crystal form with geometric growth patterns observed on the crystal faces. The crystal of johnkoivulaite is grayish-violet in color and strongly pleochroic, going from nearly colorless with $E\perp c$ to dark bluish-violet with $E\parallel c$. Johnkoivulaite has a Mohs hardness of about $7\frac{1}{2}$ and a measured density of 3.01(10) g/cm³. It is uniaxial (–) with $\omega = 1.607(1)$ and $\varepsilon = 1.605(1)$ (white light). Electron microprobe analyses gave the empirical formula of $(Cs_{0.85}K_{0.10}Na_{0.01})(Be_{1.88}B_{1.12})(Mg_{1.66}Fe_{0.27}Mn_{0.01}Al_{0.05})$ ($Si_{5.98}$) O_{18} with Be calculated by stoichiometry and confirmed by LA-ICP-MS measurements. Johnkoivulaite is hexagonal, P6/mmc (no. 192) with a=9.469(2), c=9.033(2) Å, V=701.5(3) Å³, and Z=2. Johnkoivulaite is isostructural with beryl and exhibits partial substitution of B for Be at the distorted tetrahedral site, Mg for Al at the octahedral site, and Cs in the channel sites within the stacked Si₆O₁₈ rings. This substitution can be written as $(CsMg_2B)(\Box Al_2Be)_{-1}$. Johnkoivulaite, the seventh member of the beryl group, is named in honor of gemologist John Koivula in recognition of his contributions to mineralogy and gemology.

Keywords: Beryl group, new mineral, gemology, johnkoivulaite, Mogok, Myanmar