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Abstract
δ-AlOOH has emerged as a promising candidate for water storage in the lower mantle and could 

have delivered water into the bottom of the mantle. To date, it still remains unclear how the presence of 
iron affects its elastic, rheological, vibrational, and transport properties, especially across the spin cross-
over. Here, we conducted high-pressure X-ray emission spectroscopy experiments on a δ-(Al0.85Fe0.15)
OOH sample up to 53 GPa using silicone oil as the pressure transmitting medium in a diamond-anvil 
cell. We also carried out laser Raman measurements on δ-(Al0.85Fe0.15)OOH and δ-(Al0.52Fe0.48)OOH 
up to 57 and 62 GPa, respectively, using neon as the pressure-transmitting medium. Evolution of 
Raman spectra of δ-(Al0.85Fe0.15)OOH with pressure shows two new bands at 226 and 632 cm−1 at 
6.0 GPa, in agreement with the transition from an ordered (P21nm) to a disordered hydrogen bonding 
structure (Pnnm) for δ-AlOOH. Similarly, the two new Raman bands at 155 and 539 cm−1 appear in 
δ-(Al0.52Fe0.48)OOH between 8.5 and 15.8 GPa, indicating that the incorporation of 48 mol% FeOOH 
could postpone the order-disorder transition upon compression. On the other hand, the satellite peak 
(Kβ′) intensity of δ-(Al0.85Fe0.15)OOH starts to decrease at ~30 GPa and it disappears completely at 
42 GPa. That is, δ-(Al0.85Fe0.15)OOH undergoes a gradual electronic spin-pairing transition at 30–42 GPa. 
Furthermore, the pressure dependence of Raman shifts of δ-(Al0.85Fe0.15)OOH discontinuously decreases 
at 32–37 GPa, suggesting that the improved hydrostaticity by the use of neon pressure medium could 
lead to a relatively narrow spin crossover. Notably, the pressure dependence of Raman shifts and optical 
color of δ-(Al0.52Fe0.48)OOH dramatically change at 41–45 GPa, suggesting that it probably undergoes 
a relatively sharp spin transition in the neon pressure medium. Together with literature data on the 
solid solutions between δ-AlOOH and ε-FeOOH, we found that the onset pressure of the spin transi-
tion in δ-(Al,Fe)OOH increases with increasing FeOOH content. These results shed new insights into 
the effects of iron on the structural evolution and vibrational properties of δ-AlOOH. The presence of 
FeOOH in δ-AlOOH can substantially influence its high-pressure behavior and stability at the deep 
mantle conditions and play an important role in the deep-water cycle.
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Introduction
The water cycling between the Earth’s surface and interior 

plays a key role in the evolution and dynamics of Earth’s interior 
(Mao and Mao 2020; Ohira et al. 2019; Ohtani 2005). Slab sub-
duction and magmatism are the two key processes regulating the 
in-gassing and outgassing rates of water and many other volatiles. 
Based on geochemical and petrological evidence, the amount 
of water entering into the mantle through subducting slabs is in 
the order of (7–10)×1011 kg/year, while water returning to the 
surface via magmatism is (2–6.7)×1011 kg/year (Ohtani 2020). 
That is, (0.3–8)×1011 kg/year of water is likely transported into 
the Earth’s interior. Hydrous minerals are the utmost important 
hosts for transporting water and hydrogen into the mantle. Thus 

far, most hydrous minerals (e.g., serpentine, 10 Å phase, phase A, 
phase E) would decompose under the temperature and pressure 
(P-T) conditions above the topmost lower mantle. However, the 
pyrite-structured FeO2Hx, the hexagonal phase [HH phase, a hex-
agonal ultradense hydrous phase of (Fe,Al)OOH], and δ-AlOOH 
phase and its solid solution with ε-FeOOH are plausibly stable 
under the lower-mantle P-T conditions (Ohtani 2020 and refer-
ences therein). Studying the behavior of these hydrous phases at 
high pressure sheds light on the potential impacts of subducted 
hydrous materials on the structure, evolution, and geodynamics 
of the Earth’s deep interior (Hu et al. 2021; Liu et al. 2021; Mao 
and Mao 2020).

The nature of δ-AlOOH at high pressure has been extensively 
investigated, including crystal chemistry, phase stability, and 
sound velocity by both experiments and theoretical calculations 
(Cortona 2017; Duan et al. 2018; Li et al. 2006; Mashino et al. 
2016; Ohira et al. 2019; Tsuchiya and Tsuchiya 2009; Tsuchiya 
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