Thermal expansion of minerals in the pyroxene system and examination of various thermal expansion models

Guy L. Hovis^{1,*}, Mario Tribaudino², Amanda Leaman³, Christine Almer⁴, Caitlin Altomare⁵, Matthew Morris⁶, Nicole Maksymiw⁷, Derek Morris⁸, Kevin Jackson⁹, Brian Scott¹⁰, Gary Tomaino¹¹, and Luciana Mantovani²

¹Department of Geology and Environmental Geosciences, Lafayette College, Easton, Pennsylvania 18042, U.S.A.
²Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Viale G.P. Usberti 157/A, I-43100 Parma, Italy
³Department of Geosciences, Utah State University, Logan, Utah 84322, U.S.A.
⁴Department of Geology and Environmental Geoscience, Lafayette College, Easton, Pennsylvania 18042, U.S.A.
⁵Shell Exploration and Production Company, 701 Poydras Street, New Orleans, Louisiana 70139, U.S.A.
⁶Langan Engineering and Environmental Services, 2700 Kelly Road, Warrington, Pennsylvania 18976, U.S.A.
⁷Environmental Logic, LLC, 11 Princess Road, Lawrenceville, New Jersey 08648, U.S.A.
⁸2240 51st Street, Sacramento, California 95817, U.S.A.
⁹Department of Natural Resources and the Environment, University of Connecticut, Storrs, Connecticut 06269, U.S.A.
¹⁰Department of Geology and Environmental Geosciences, Lafayette College, Easton, Pennsylvania 18042, U.S.A.

¹¹Specialty Minerals, Inc., 640 North Third Street, Easton, Pennsylvania 18042, U.S.A.

ABSTRACT

To examine the effects of chemical composition on thermal expansion in the pyroxene mineral group, X-ray diffraction data have been collected from room temperature to ~925 °C on a chemically diverse group of 13 pyroxenes including four orthorhombic and nine monoclinic samples. Additionally, resulting unit-cell volumes computed from the XRD data have proven to be good tests for a large number of thermal expansion models; the physical model by Kroll and coworkers and the empirical one by Fei have been found to be especially useful. Modeling also has allowed the connection of present data, collected at temperatures above 25 °C, to the volume data of other workers for much lower temperatures, well below 0 °C, and also extrapolation of values for volume and thermal expansion well beyond the measurement range.

We have found for orthopyroxenes that Fe^{2+} - Mg^{2+} substitution has little effect on thermal expansion coefficients for volume. For clinopyroxenes, however, greater thermal expansion occurs in Ca^{2+} - (diopside, augite, hedenbergite, johannsenite) than in Li⁺- (spodumene) or Na⁺-bearing members (jadeite, aegirine, kosmochlor). Present data support the observation that differences in volume thermal expansion relate primarily to differences in expansion along the *b* crystallographic axis. This apparently is due to the greater concentration of M1 polyhedra along the *b* crystallographic axis, where expansion differences can be related to the shared O1-O1 polyhedral edge and inter-oxygen repulsion that is made easier by divalent, as opposed to trivalent, cation occupancy of the M1 crystallographic site.

Keywords: Pyroxenes, thermal expansion, modeling