Stöfflerite, (Ca,Na)(Si,Al)₄O₈ in the hollandite structure: A new high-pressure polymorph of anorthite from martian meteorite NWA 856

OLIVER TSCHAUNER^{1,*}, CHI MA^{2,†}, JOHN G. SPRAY³, ERAN GREENBERG⁴, AND VITALI B. PRAKAPENKA⁴

¹Department of Geoscience, University of Nevada Las Vegas, Nevada 89154, U.S.A. ²Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. ³Planetary and Space Science Centre, University of New Brunswick, New Brunswick E3B 5A3, Canada ⁴GSECARS, University of Chicago, Argonne National Laboratory, Lemont, Illinois 60439, U.S.A.

ABSTRACT

We present the crystal structure, composition, and occurrence of stöfflerite, the naturally occurring Ca-aluminosilicate with hollandite-type structure. Stöfflerite is a high-pressure polymorph of anorthite and an approved mineral. The type material was found in the shergottic martian meteorite Northwest Africa 856. Type stöfflerite (Sto₆₀Lin₄₀) assumes space group *I*4/*m* with unit-cell dimensions a = 9.255(1) Å, c = 2.742(3) Å, V = 235.1(2) Å³, and Z = 2.

Keywords: High pressure, new mineral, hollandite, shock compression