Seaborgite, LiNa₆K₂(UO₂)(SO₄)₅(SO₃OH)(H₂O), the first uranyl mineral containing lithium

ANTHONY R. KAMPF^{1,*}, TRAVIS A. OLDS², JAKUB PLÁŠIL³, JOE MARTY⁴, SAMUEL N. PERRY⁵, LORETTA CORCORAN⁵, AND PETER C. BURNS^{5,6}

¹Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A. ²Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213, U.S.A.

³Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic

⁴5199 East Silver Oak Road, Salt Lake City, Utah 84108, U.S.A.

⁵Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A. ⁶Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.

Abstract

Seaborgite (IMA2019-087), LiNa₆K₂(UO₂)(SO₄)₅(SO₃OH)(H₂O), is a new mineral species from the Blue Lizard mine, Red Canyon, San Juan County, Utah, U.S.A. It is a secondary phase found on gypsum in association with copiapite, ferrinatrite, ivsite, metavoltine, and römerite. Seaborgite occurs in sprays of light-yellow, long flattened prisms or blades, up to about 0.2 mm in length. Crystals are elongated on [100], flattened on $\{010\}$, and exhibit the forms $\{100\}$, $\{001\}$, $\{001\}$, and $\{101\}$. The mineral is transparent with vitreous luster and very pale-yellow streak. It exhibits bright lime-green fluorescence under a 405 nm laser. The Mohs hardness is $\sim 2\frac{1}{2}$. The mineral has brittle tenacity, curved or conchoidal fracture, and one good cleavage on $\{100\}$. The measured density is 2.97(2) g/cm³. The mineral is immediately soluble in H₂O at room temperature. The mineral is optically biaxial (-), $\alpha =$ $1.505(2), \beta = 1.522(2), \gamma = 1.536(2)$ (white light); $2V_{\text{meas}} = 85(1)^\circ$; moderate r < v dispersion; orientation $X \wedge \mathbf{a} \approx 10^{\circ}$; pleochroic X colorless, Y and Z light green-yellow; $X < Y \approx Z$. EPMA and LA-ICP-MS analyses of seaborgite undermeasured its Li, K, and Na. The empirical formula using Li, Na, and K based on the structure refinement is $Li_{1,00}Na_{5,81}K_{2,19}(UO_2)(SO_4)_5(SO_3OH)(H_2O)$. Seaborgite is triclinic, $P\overline{1}, a = 5.4511(4), b = 14.4870(12), c = 15.8735(15) \text{ Å}, a = 76.295(5), \beta = 81.439(6), \gamma = 85.511(6)^{\circ}, \beta = 81.439(6), \gamma = 85.511(6)^{\circ}, \gamma = 85.511(6)^{\circ},$ V = 1203.07(18) Å³, and Z = 2. The structure $(R_1 = 0.0377 \text{ for } 1935 I > 2\sigma I)$ contains $[(UO_2)_2(SO_4)_8]^{4-1}$ uranyl-sulfate clusters that are linked into a band by bridging LiO_4 tetrahedra. The bands are linked through peripheral SO₄ tetrahedra forming a thick heteropolyhedral layer. Channels within the layers contain a K site, while an additional K site, six Na sites, and an SO₃OH group occupy the space between the heteropolyhedral layers.

Keywords: Seaborgite, new mineral species, lithium, uranyl sulfate, crystal structure, Blue Lizard mine, Red Canyon, Utah