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Abstract
Water plays a key role in shaping our planet and making life possible. Given the abundance of 

water on Earth’s surface and in its interior, chemical reactions involving water, namely hydration and 
dehydration reactions, feature prominently in nature and are critical to the complex set of geochemi-
cal and biochemical reactions that make our planet unique. This paper highlights some fundamental 
aspects of hydration and dehydration reactions in the solid Earth, biology, and man-made materials, 
as well as their connections to carbon cycling on our planet.

Keywords: Hydration/dehydration reactions in the solid Earth, hydration/dehydration in biology, 
hydration/dehydration in modern society, water cycle; Earth in Five Reactions: A Deep Carbon Perspective

Introduction
Hydration/dehydration reactions are common on Earth, be-

cause it is a liquid water-rich planet, and are intrinsic to the geo- 
and biochemical processes that have shaped Earth’s evolution, 
habitability, and biosphere (Rubey 1951). Hydration reactions are 
chemical reactions in which a substance uptakes the equivalent of a 
water molecule (H2O); dehydration reactions are the converse reac-
tion, the loss of a water molecule. The water formula-equivalent 
may be lost or gained in a concerted or unconcerted manner, with 
protonation and deprotonation occurring in series. As an example, 
a simple hydration reaction particularly relevant to this collection 
is the formation of carbonic acid from CO2 and H2O:

  H2O   +         CO2        →      H2CO3. (1)
water + carbon dioxide → carbonic acid

This reaction is important in ocean chemistry, geological 
cycling and biology on Earth in a multitude of ways, several of 
which are presented in the following sections.

Hydration/dehydration reactions play a pivotal role in the 
dynamics of the solid Earth (the first part of this review), in life 
(the second part), and in modern society (the final part). In this 
review we summarize some important features of hydration/dehy-
dration reactions and how they have participated in the evolution 
of carbon’s behavior in the context of our planet, its biology, and 
modern society.

Hydration/dehydration reactions in the solid 
earth

In Earth science, the term water commonly includes a range of 
H-bearing compounds such as molecular H2O, hydroxyl groups 
(OH–), or simply H. This water can be incorporated in rocks in 
multiple ways, such as in hydrous minerals, in nominally an-
hydrous minerals, in fluid inclusions, or adsorbed onto mineral 
surfaces without entering the structure of the mineral. Hydrous 
minerals can host water as either molecular H2O or OH–, or in 
both forms, and include a large variety of mineral groups such 
as clays, amphiboles, micas, chlorite, serpentines, lawsonite, and 
many others, some capable of hosting more than 10 wt% water. 
Among the most important hydrous minerals is serpentine (13 
wt% bond water), which forms through the hydration of olivine, 
ranging in composition from Mg2SiO4 to Fe2SiO4, as described 
by the model reaction: 
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2Mg2SiO4   + 3H2O → Mg3Si2O5(OH)4 + Mg(OH)2. (2)
Mg-olivine + water →    serpentine      +  brucite 

The serpentinization reaction may also involve oxidation of 
Fe2+ in iron-containing olivine and other minerals such as py-
roxenes, and its partitioning among minerals such as magnetite, 
brucite, and serpentine, for example (Andreani et al. 2013; Klein 
et al. 2009):

 3Fe2SiO4 + 2H2O →  2Fe3O4   +        3SiO2       +     2H2.       (3)
Fe-olivine + water → magnetite + dissolved silica + di-hydrogen 

During serpentinization, hydration is not only important for 
the incorporation of water into the solid Earth, but also generates 
natural chemical energy sources such as H2 and affects carbon 
redox cycling, most notably the abiotic conversions of CO2 into 
hydrocarbons, reactions that have analogs in biochemistry (Schulte 
et al. 2006; Russell et al. 2010). Such reactions might have played a 
role early in life’s emergence, and they are thought to occur widely 
on solar system bodies and the sites where they occur may be good 
targets for planetary exploration and the search for extraterrestrial 
life (e.g., Schrenk et al. 2013).

Nominally anhydrous minerals (NAMs) are minerals that do 
not contain water in their formula by definition but where H or, 
more rarely molecular H2O, can be incorporated in structural de-
fects such as cation vacancies and charge deficiencies (e.g., Smyth 
et al. 2003). Typical examples are olivine, pyroxenes, and garnet, 
all of which can host several hundred parts per million of water.

The following sections summarize the cycle of water in the 
solid Earth and the exchanges among different geological water 
reservoirs. Free water hosted in rocks, i.e., pore water or fluid 
inclusions, will not be discussed.

Early hydration on Earth
The same mechanisms that brought water to Earth are closely 

linked to the ones that brought carbon, as hydrogen and carbon are 
volatile elements in protoplanetary disk contexts. Both are found 
in small amounts within inner solar system bodies (≤2.5–3 AU, 
Morbidelli et al. 2012; Gail and Trieloff 2017). However, large 
differences between hydrogen and carbon chemistries—including 
hydration processes (see below) and organic chemistry (Henning 
and Semenov 2013)—induce differential behaviors at every step 
of their incorporation into rocks. Starting with nebular processes, 
retention of water vapor in the hot, terrestrial planet forming region 
may occur through adsorption onto silicates (e.g., forsterite) as 
supported by atomistic simulations (e.g., King et al. 2010). The pre-
dicted adsorption of dissociated water to silicate surfaces opens the 
possibility for hydration reactions in condensates (King et al. 2010).

A large part of Earth’s water (and carbon) likely came from 
outer solar system sources. This may have been delivered by the 
inward drift of hydrated silicates (Ciesla and Lauretta 2005) or 
more likely by accretion of either carbonaceous chondrite-like 
bodies, or comets, both enriched in H and C (see reviews by 
Morbidelli et al. 2012; Marty et al. 2016; O’Brien et al. 2018). 
The speciation of hydrogen (either water ice or hydrated phases) 
in impactors is an important parameter influencing dehydration/
hydration during transport and impact. In the most water-rich CI 
and CM carbonaceous chondrites, hydrogen is mostly contained 

in serpentine and smectite (H in organic matter is only a small 
fraction of the bulk) that likely formed in the meteorites’ parent 
bodies through melting of accreted ices (e.g., Brearley 2006). 
Asteroidal water-rock interactions are thus an example of the 
early importance of serpentinization in the solar system. Iron, 
abundant in these undifferentiated systems, is initially present as 
Fe0 in alloys and Fe2+ in sulfides and ferromagnesian silicates, 
and as both Fe2+ and Fe3+ in serpentine (e.g., Zega et al. 2003). 
In the absence of substantial amounts of oxygen, this suggests 
H2 production through water reduction coupled to iron oxidation 
and its variable incorporation to serpentines at low temperatures, 
presenting an analogy with terrestrial serpentinization (e.g., An-
dreani et al. 2013).

How do chondritic materials dehydrate during impacts? Most 
studies have focused on magnesian serpentine, and shock dehydra-
tion of antigorite occurs at much higher pressures and temperatures 
than static dehydration due to dynamic effects (see e.g., Sekine et 
al. 2012). Much remains to be understood about the partitioning of 
water between the atmosphere and the solid Earth and hydration/
dehydration competition during impacts, likely frequent during 
late accretion (Morbidelli et al. 2012; O’Brien et al. 2018). It is 
important to evaluate these predicted inputs together with possible 
earlier and deep hydration of terrestrial building blocks, through 
nebular inheritance. Indeed, the amount and distribution of water 
and other volatile species including C-bearing species at early 
stages would have profoundly affected differentiation processes 
(Elkins-Tanton 2012; Izodoro et al. 2013; see also Dasgupta 2013, 
for the case of carbon).

Hydration and weathering at the hydrosphere-lithosphere 
interface

The hydration of CO2 to form H2CO3 (reaction 1) drives sev-
eral other important reactions, both on the continents and in the 
ocean, that collectively form the carbonate-silicate cycle (Fig. 1; 
Stewart et al. 2019). These reactions are significant for the transfer 
of hydrogen and carbon between Earth’s major reservoirs. For 
example, silicate weathering removes H2O and CO2 from the 
atmosphere-hydrosphere system and sequesters these volatiles 
in solid rock. Chemical weathering of silicates is enhanced by 
mountain-building events (Fig. 1), wherein silicate rocks are up-
lifted and exposed to mechanical weathering processes. As a result, 
a positive feedback may develop between orogenesis and removal 
of CO2 from the atmosphere by silicate weathering (Raymo et al. 
1988; Macdonald et al. 2019).

Since plagioclase feldspar is the most abundant mineral in the 
Earth’s crust, and since Ca-feldspar appears to be the most rapidly 
weathered Earth surface mineral (Kump et al. 2000), weathering 
of anorthite is used here as a representative example of a silicate 
weathering reaction. The same principles can be applied to other 
hydration reactions such as serpentinization (Kelemen et al. 2011). 
The net result of anorthite weathering can be expressed as:

2H2O +       CO2      +   CaAl2Si2O8  → Al2Si2O5(OH)4 + CaCO3. (4)
water + carbon dioxide + anorthite  →  kaolinite + calcium carbonate 

in which H2O and CO2 in the atmosphere react with anorthite to 
produce kaolinite (clay) and calcium carbonate, which can then 
be buried and/or subducted into the deep Earth.
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An additional outcome of note is that calcium carbonate 
precipitation exchanges Ca2+ for two H+ ions in carbonic acid, 
which may contribute to lowering the pH of the ocean. The net 
effect of adding acid equivalents to the oceans is commonly 
referred to as ocean acidification, although it is worth noting 
that the ocean as a whole is slightly basic (pH > 8), and rather 
than causing ocean water to become acidic, the addition of H+ 
ions drives the pH of the oceans to a slightly less basic value, 
partially due to carbonate/bicarbonate buffering. To maintain 
bicarbonate equilibrium, some excess H+ reacts with CO3

2+. This 
removes carbonate ions from the ocean, inhibiting the formation 
of CaCO3 (Kump et al. 2000). Thus, the pH of the ocean is buff-
ered by marine carbonates, but if the pH drops too abruptly, not 
only will new carbonate precipitation be inhibited but existing 
carbonate-based ecosystems, such as nanoplankton and coral 
reefs, may begin to dissolve (Kump et al. 2009). So, while the 
oceans do have the capacity to act as an atmospheric CO2 sink, 
this atmospheric buffering may come at a cost to marine life 
(Caldeira and Wickett 2003).

Hydration and companion carbonation of silicate minerals 
also represent a fundamental means to transfer water and carbon 
from oceans into the solid Earth (Fig. 1; Stewart et al. 2019). 
Alteration of mantle rocks (serpentinization, reaction 2) and 
mafic oceanic crust can lead to the formation of hydrous miner-
als such as serpentine, brucite, amphiboles, smectites, chlorites, 
epidotes. The amount of water (and carbon) incorporated into the 
oceanic lithosphere through hydration decreases with depth, and 
strongly depends on the structure and composition of the oceanic 
lithosphere. Global budgets for the sequestration of chemically 
bound H2O in the oceanic lithosphere are on the order of 1012 
kg/yr, i.e., about one billionth of the total ocean volume per year 
(Faccenda 2014; Jarrard 2003).

Recycling of water through subduction zone metamorphism
The altered oceanic crust is buried along subduction zones, 

providing a mechanism for transporting water and carbon into the 
mantle (Fig. 1). Aqueous fluids are then produced by dehydration 

reactions involving the hydrous minerals introduced in the previ-
ous section during burial and heating of the oceanic crust (Fig. 
1). Sediments play a quantitatively minor role for water storage 
(Faccenda 2014; Jarrard 2003) and thus are not considered here. 
In the altered mafic oceanic crust, key hydrous minerals formed 
by progressive reequilibration of the weathering products of the 
oceanic crust (see previous section) during burial in the subduc-
tion zone include chlorite, amphibole, epidote, and lawsonite. 
With rising temperature and pressure, these hydrous minerals 
are subjected to dehydration reactions that generally occur over 
an extended temperature range (300–800 °C) characteristic of 
the forearc-to-subarc of subducting slabs (Fig. 1). This leads to 
a gradual release of water that is most pronounced at fore-arc 
conditions, up to 80 km depth (Schmidt and Poli 1998). At 
subarc conditions (~80–150 km depth of the slab) mafic rocks 
have mainly converted to an anhydrous rock called eclogite that 
dominantly consists of garnet and omphacite. In contrast, in 
subducted hydrated mantle, there are only three major dehydra-
tion reactions occurring over restricted temperature intervals of 
about 20–30 °C and correspond to the release of ~2 wt% H2O 
(60–80 km depth), 5–8 wt% H2O (80–120 km depth), and 1–3 
wt% H2O (100–150 km depth, respectively (Padrón-Navarta et al. 
2013; Ulmer and Trommsdorff 1995; Fumagalli and Poli 2005).

The release of aqueous fluids through dehydration reac-
tions also controls the fate of subducted carbon, by enhancing 
decarbonation reactions (Gorman et al. 2006; Stewart et al. 
2019; Edmonds et al. 2020), carbonate dissolution, and melting 
of carbonate-bearing rocks at the top of the slab (Kelemen and 
Manning 2015; Hermann and Spandler 2008).

The aqueous fluids released by dehydration reactions will 
migrate, initially within the slab and eventually through the 
overlying mantle wedge (Fig. 1). Moreover, fluid-rock interac-
tions during this percolation may result in hydration of slab- and 
mantle wedge-forming rocks and re-sequestration of part of the 
previously released aqueous fluids (King et al. 2003; Vitale 
Brovarone and Beyssac 2014; Hyndman and Peacock 2003; 
Wada et al. 2012).

Figure 1. Geodynamics of hydration/
dehydration. The orange labels refer 
to processes of hydration and water 
sequestration in rocks and magmas, 
whereas the blue labels refer to processes 
of dehydration or water release from rocks 
and magmas. Modified after Figure 1 in Li 
et al. (2019) by Josh Wood/Deep Carbon 
Observatory.
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Role of water in new crust formation
As aqueous fluids and hydrous melts leave the subducted 

slab at subarc depths, they encounter higher temperatures due to 
the inverted thermal gradient at the top of the slab. Water-fluxed 
partial melting of the mantle occurs a few kilometers above 
the subducted slab, when temperatures exceed about 1025 °C 
and melt fractions increase until the hottest part of the mantle 
wedge is reached (Green 2015). The resulting hydrous basalts to 
basaltic andesites ascend to form new continental crust (Fig. 1) 
(Grove and Kinzler 1986). Compared to mid-ocean ridge basalts 
(MORB) these arc basalts are enriched in H2O and a suite of 
incompatible trace elements extracted by the fluid phase from 
the subducted slab (Hawkesworth et al. 1993). Olivine-hosted 
melt inclusions suggest that primitive arc magmas contain about 
4–6 wt% H2O (Plank et al. 2013; Roggensack et al. 1997). 
Water strongly affects the way the basaltic magmas differenti-
ate. The presence of water promotes amphibole crystallization 
and drives plagioclase to more anorthite-rich compositions. 
Due to the elevated oxygen fugacity in arc magmas, magnetite 
forms relatively early during this differentiation. Together these 
three processes lead to a pronounced enrichment of SiO2 and 
to a differentiation producing voluminous amounts of granites 
(Ulmer et al. 2018). Additionally, the liberation of H2O during 
the crystallization of hydrous magmas and the heat input by 
mafic underplating promotes partial melting in the lower crust, 
providing an additional process for producing granites that 
can migrate upward to form highly differentiated upper crust 
(Chappell and White 1992).

The low density of such upper continental crust is the ba-
sis for the establishment of stable continental crust that is no 
longer subducted and that emerges above sea level: “No water, 
no granites – no oceans, no continents” (Campbell and Taylor 
1983). Weathering of emerged continents provides a means to 
transfer H2O from the hydrosphere to the lithosphere and an 
important feedback mechanism to stabilize atmospheric CO2 
concentrations (see the section Hydration and weathering at the 
hydrosphere-lithosphere interface above). Thus, the presence of 
water on Earth is not only essential for the development of life 
itself, but it also creates variable habitats such as continents and 
oceans and helps to regulate Earth’s climate.

Hydration in the deep Earth
Not all H2O is recycled back to the Earth’s surface via fore-arc 

dehydration reactions and arc magmatism. Trace amounts of H2O 
are measured in “nominally anhydrous minerals” (NAMs) such 
as olivine, pyroxene, and garnet in point defects (e.g., Demouchy 
and Bolfan-Casanova 2016). The investigation of eclogite facies 
garnet (containing up to 130 ppm water) and omphacite (contain-
ing up to 3000 ppm water) that formed from hydrous phases by 
dehydration reactions showed that small amounts of water are 
retained in the subducted oceanic crust (Katayama et al. 2006; 
Smyth et al. 1991). Also the interaction of slab-derived fluids 
with the mantle wedge will lead to the incorporation of traces 
of H2O in olivine and pyroxenes. Experiments have shown that 
water in olivine in the mantle wedge increases with increasing 
pressure and temperature and ranges from 20–200 ppm H2O 
(Padrón-Navarta and Hermann 2017). At much higher pressures 
(i.e., 12 GPa) it is well known that olivine can host up to 10 000 

ppm H2O (Smyth and Jacobsen 2006). However, the deepest 
hydrated systems reported so far are related to diamonds and 
their mineral or fluid inclusions (i.e., Pearson et al. 2014; Smith 
et al. 2016, 2018). A possible reaction occurring at depths be-
tween 525 and 660 km (in the lower transition zone) involves 
the mineral ringwoodite (idealized formula Mg2SiO4), which 
was found as an inclusion within a Brazilian diamond (Pearson 
et al. 2014) containing about 1.4% wt H2O. For such minerals, 
the hydration mechanism would include protonation of oxygen 
sites (hydroxyl, OH–) associated with the vacant and partially 
vacant octahedral sites, [VMg(OH)2]x, Mg2+ substitution for Si4+ 
on the tetrahedral site, [MgSi(OH)2]x, tetrahedral silicon vacan-
cies with a hydrogarnet type defect, [VSi(OH)4]x, and defects on 
tetrahedral edges, [Mg/Fe2+/Fe3+

Si(OH)2]x (see Thomas et al. 2015 
and references therein). Further evidence of hydration at great 
mantle depths related to diamonds are the fluid jackets found 
between the diamond host and the inclusions. Such jackets are 
made by molecular hydrogen (H2) and methane (CH4, Smith et 
al. 2016, 2018). Most recently, the presence of Ice-VII—a cubic 
crystalline form of ice—was reported in super-deep diamonds 
(Tschauner et al. 2018).

Hydration/dehydration and Earth’s dynamics
It is widely accepted that water plays a fundamental role in 

mantle convection and its surface expression, plate tectonics 
(Fig. 1). At shallow depths, water reacts with dry minerals of 
the oceanic lithosphere to generate hydrous phases that have 
substantially lower mechanical strength than the dry counterparts 
(Escartin et al. 2001; Hilairet et al. 2007). During subduction, 
the hydrous minerals become progressively unstable releasing 
fluids that further lubricate the plate boundary. As a consequence, 
the mechanical weakening associated with hydrous minerals 
and the subsequent release of water is considered to be a criti-
cal ingredient for the relative movement of rigid blocks like the 
tectonic plates and hence the persistence of plate tectonics on a 
cooling, Earth-like planet.

At higher temperatures, where hydrous minerals are no longer 
stable, the incorporation of water (or more properly hydrogen 
equivalents) as hydroxyl point defect speeds up the kinetics of 
transport properties in NAMs because the incorporation of OH is 
charge balanced by the creation of vacancies, on the concentra-
tion of which most diffusive processes depend (Bolfan-Casanova 
2005). As a result, water (hydrogen) increases the tendency 
of NAMs to creep, either by increasing the concentration of 
point-defects (i.e., cation vacancies) that, at high temperatures 
typical of the external portions of subducting slabs, enhances 
rates of species diffusion (diffusion creep) and dislocation climb 
(power-law creep), or, at low temperatures typical of slab cores, 
by reducing the Peierls stress/barrier to kink migration and thus 
enhancing dislocation glide (exponential-creep) (Karato 2006; 
Kohlstedt 2006). For instance, the addition of 0.1 wt% H2O can 
reduce the effective viscosity of wet NAMs by a factor of 103 
or more (Karato 2006). It has been recently found that water 
decreases the lattice thermal conductivity of NAMs such as 
olivine (Chang et al. 2017), which would result in a decrease of 
the cooling rate of Earth. Thus, the presence of water in NAMs 
enhances the vigor of mantle convection and, more in general, 
the dynamical behavior of our planet.
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The role of hydration/dehydration in biology
Our current understanding of the limits of terrestrial life sug-

gests water is one of the main requirements for the existence and 
survival of life on our planet and beyond (Stevenson et al. 2015; 
Merino et al. 2019). The molecular properties of water make it a 
powerful solvent, capable of interacting with a large number of 
macromolecules and as a stabilizing molecule in many of biology 
reactions (Franks 2007; Privalov and Crane-Robinson 2017) and 
macromolecular structures (Privalov and Crane-Robinson 2017). 
Additionally, water molecules also actively participate in several 
biological reactions either as a reactant or as a product. Hydration 
and dehydration reactions are indeed pervasive in several key reac-
tions in the central metabolism. For example, condensation reac-
tions of biological polymers, the reaction linking single monomers 
to create longer chains, are in fact dehydration reactions (Hulshof 
and Ponnamperuma 1976), and hydration/dehydration reactions 
feature prominently in the central metabolism, with key reactions 
belonging to this class present in the Tri-Carboxylic Acid (TCA) 
cycle and in numerous other metabolic pathways, including carbon 
fixation pathways responsible for primary productivity on Earth’s 
ecosystems. Beyond the direct involvement of water as a solvent 
or reactant in biological reactions, water has also other indirect 
effects on biology and its existence. For example, the water cycle 
is critical in maintaining our planet habitability, and in redistribut-
ing nutrients and volatiles across the surface of the planet, both in 
the atmosphere and the oceans (Jelen et al. 2016). Additionally, 
the hydration of minerals directly influences the availability of 
substrates used by biology in metabolic reactions. Examples are 
the bioavailability of iron in aqueous media linked to the hydration 
and precipitation of Fe3+ as iron hydroxide (FeOH) (Turner and 
Hunter 2001; Schröder et al. 2003) and the hydration of Fe-bearing 
minerals such as in serpentinization reactions, resulting in alkaline 
pH, production of H2 and potentially low-molecular weight organic 
carbon (e.g., formate, methane, and a wide variety of other organic 
compounds) (McGlynn et al. 2020). The hydration reactions in 
serpentinization may have played a role in the origins of life on 
Earth (Russell et al. 2010; Schrenk et al. 2013) and perhaps be 
common throughout the cosmos, potentially sustaining extracel-
lular life (Holm et al. 2015; Merino et al. 2019).

Water is also the electron donor in oxygenic photosynthesis 
(Brudvig et al. 1989; Bricker and Ghanotakis 1996), playing a 
key role in the extant Earth and profoundly influencing its redox 
evolution (Jelen et al. 2016; Moore et al. 2017). The evolution 
of the oxygen-evolving complex in oxygenic photosynthesis has 
in fact allowed to utilize the far more abundant H2O as electron 
donor in place of H2S used in anoxygenic photosynthesis (Fischer 
et al. 2016). The resulting release of O2 as an end product of the 
water oxidation has dramatically altered the redox state of Earth’s 
atmosphere and oceans and permanently changed all major bio-
geochemical cycles (Moore et al. 2017). Despite the key role of 
water in oxygenic photosynthesis, hydration/dehydration reactions 
are not directly involved in the light-dependent reactions, and only 
appear during the carbon fixation steps in the Calvin-Benson-
Bassam cycle during the RuBisCo catalyzed hydrolysis of the 
2-carboxy-3-keto-D-arabinitol 1,5 biphosphate intermediate into 
two 3-phosphoglycerate molecules.

The central role of hydration reactions in central metabolism 

is not surprising since the cytosol of organisms is aqueous and the 
activity of water in organisms is generally very high. Consequently, 
the addition of water across bonds (hydration) is generally more 
thermodynamically favored than elimination (dehydration or 
condensation). Thus, in many cases where a thermodynamically 
unfavorable dehydration reaction is required, biology uses some 
form of chemical activation to drive it. This chemical activation is 
often driven by phosphorylation or polyphosphorylation reactions, 
which are themselves typically accomplished via dehydration 
reactions. Thus, despite the dehydration being thermodynamically 
disfavored, the trade-off of higher energy hydration with lower 
energy dehydration allows the entire reaction to progress, a motif 
that is found in many biosynthetic reactions.

Despite their lower thermodynamic drive, dehydration reaction 
are so ubiquitous inside living cells that they largely control the 
origin of the intracellular water. It is estimated that in Escherichia 
coli, up to 70% of the intracellular water is derived directly from 
dehydration reactions (the so-called metabolic water) rather than 
by diffusion from outside (Kreuzer-Martin et al. 2005). The 
proportion of metabolically derived water has been shown to be 
directly linked to the metabolic state of the cell, further indicating 
the variable importance that hydration/dehydration reactions have 
during different phases of the cellular metabolic cycle (Kreuzer-
Martin et al. 2005).

Dehydration: Polymerization of biological molecules
In resting cells, non-water biomass is distributed among pro-

teins (~60%), nucleic acids (~20%), lipids (~10%), polysaccha-
rides (~5%), and small metabolites plus ions (~5%) (Neidhardt et 
al. 1990; Lane and Fan 2015). Of these, the three major classes of 
biological macromolecules (nucleic acids, proteins, and polysac-
charides) are universally polymerized by dehydrative condensa-
tion from their constituent monomers (nucleotides, amino acids, 
and carbohydrates) as depicted in Figure 2a, and while lipids are 
not polymerized by dehydration, vicinal dehydration is a critical 
intermediate step in lipid biosynthesis (Fig. 2b).

These reactions, however, will not occur spontaneously in an 
aqueous environment and are instead driven by external produc-
tion of a higher energy bond that can be hydrated to offset the 
energy consumed to effect the polymeric dehydration, making 
the coupled reaction system favorable overall. In the case of 
carbohydrates and nucleotides, this higher energy bond comes 
in the form of a phosphate or polyphosphate linkage present on 
an energy carrying molecule such as ATP (Fig. 2b). In the case 
of amino acids (reaction 5), a two-step process is used where 
phosphate hydrolysis is used to drive the formation of a high-
energy hydrolyzable thioester in the form of aminoacyl-CoA, 
which provides the required energy for polymerization (Fig. 2c). 
While lipid synthesis is a simple dehydration polymerization, the 
precursor step of forming a similar high energy thioester, again 
coupled to phosphate ester hydrolysis, is a dehydration reaction, 
without which lipid synthesis could not occur (Berg et al. 2002).

H2N-R1-COOH + H2N-R1-COOH → 
amino acid R1     +    amino acid R2 →
H2N-R1-CONH-R2-COOH + H2O. (5)
         dipeptide R1R2           + water
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The fact that these reactions are thermodynamically unfavor-
able and must be driven by an external energy source is crucial to 
life. For proteins, nucleic acids, and polysaccharides, the sequence 
and bond location of each link in the polymer must be precisely 
controlled to achieve the intended function of the polymer. If these 
reactions were spontaneous, the necessary level of specificity could 
not be attained, and life as we know it would be impossible. A 
second major advantage of biopolymers having a higher energy 
than their constituent monomers is that polymers can be easily 
degraded and recycled; for example, mRNA, tRNA, and proteins 
are expressed transiently to achieve a needed temporary function, 
after which they are broken down by hydrolysis, in the reverse 
of the polymerization process. The monomers can then be used 
in new polymerizations, allowing much more efficient control of 
biochemical function than could be achieved without this catabolic 
process (Morowitz and Smith 2007).

Hydration/dehydration in central metabolism
There are numerous reactions in central metabolism, the locus 

of chemical reactions that supply material and energy to the liv-
ing system, which involve addition or elimination of water. Core 
carbon metabolism uses vicinal dehydrations in the interconversion 
of metabolic intermediates. These include the interconversion of 
citrate and isocitrate by aconitase and of fumarate and malate by 
fumarase in the TCA cycle (Berg et al. 2002). The TCA cycle is 
the major energy-yielding catabolic pathway in the cells, and its 
intermediates are fundamental for cellular biosynthesis. Metabolic 

substrates as sugars, lipids, and amino acids enter the TCA cycle 
as acetyl-CoA and are oxidized to CO2. The cycle starts with the 
condensation through a hydration reaction of the acetyl group 
from acetyl-CoA to oxaloacetate to form citrate, which is promptly 
dehydrated and re-hydrated to isocitrate thanks to the action of the 
aconitate hydratase. This hydration/rehydration represents a criti-
cal step for the TCA cycle since citrate, a tertiary alcohol, cannot 
be easily oxidized. Another critical hydration step during the TCA 
cycle is the reverse conversion of fumarate to L-malate catalyzed 
by fumarate hydratase.

The inverse reactions, the dehydration of L-malate to fumarate 
and the hydration-dehydration of isocitrate to citrate, feature on the 
reductive version of the TCA cycle (rTCA), involved in the fixation 
of CO2 into biomass in anaerobic chemolithoautotrophic organisms 
(Fuchs 2011). In the Wood-Ljungdahl (WL) pathway, the reduction 
of carbon dioxide also requires a dehydration reaction to proceed 
(Ragsdale and Pierce 2008). The WL pathway is believed to be, 
together with the rTCA cycle, one of the oldest carbon fixation path-
ways in existence (Giovannelli et al. 2017) and might have played 
a key role in life emergence (Russell and Martin 2004). Among the 
key substrates of the pathway, hydrogen can be derived from the 
hydration reaction of olivine minerals in serpentinizing environ-
ments, thus directly linking the hydration reaction in the geosphere 
with the biosphere (McGlynn et al. 2020). Furthermore, in each of 
these pathways the numerous steps involving ATP or acetyl-CoA 
each entail either a hydration or dehydration reaction to proceed.

Having discussed the necessity of a high-energy hydrolyzable 

Figure 2. Examples of important biochemical dehydration reactions. Reactions are depicted as schema intended to highlight the dehydration reaction 
and not as a strict representation of the cellular processes, which both involve enzymes and activating chemistries. (a) Anabolic dehydration reactions are 
responsible for the formation of each of the three major classes of biopolymers (proteins, nucleic acids, polysaccharides). The converse hydration reactions 
are used for the breakdown of these polymers in catabolic metabolism. (b) Phosphorylation and polyphosphorylation are dehydration reactions critical 
for activating other biochemical reactions, as well as cellular regulation. (c) Vicinal dehydration and hydration reactions are crucial in core metabolism.
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bond to drive the polymerization of biomacromolecules, it is natu-
ral to first address how these bonds are themselves created. One 
of the highest energy and most ubiquitous of these bonds are the 
polyphosphate linkages of ATP (LaRowe and Helgeson 2007; Karl 
and Bossard 1985). Like biopolymers, ATP is also formed through 
a dehydration polymerization of phosphate with ADP (Fig. 3b), 
though the most common mechanism is hypothesized to be physi-
cal rather than chemical (Senior et al. 2002; Štrajbl et al. 2003). 
Driven by a proton gradient, the ATP-synthase enzyme creates 
ATP squeezing ADP and phosphate together, causing a dehydration 
reaction. A chemical process that can produce ATP, substrate level 
phosphorylation, also occurs in the Krebs cycle and in glycolysis, but 
is less efficient (Ernster and Schatz 1981). Regardless of the source, 
hydrolysis of the resultant ATP molecules can provide the necessary 
energetic offset required to drive other unfavorable reactions. The 
ubiquity of ATP use throughout biochemistry is such that nearly all 
biochemical processes require dehydration reactions to proceed.

Societal impact of hydration/dehydration 
reactions

Hydration and dehydration reactions feature prominently in 
modern chemistry and are essential steps in the construction of 
our cities and production of numerous compounds, including 
various aldehydes, alcohols, and precursors of polymers. These 
reactions have been extensively leveraged in modern chemistry 
both for their applications in the synthesis of organic molecules 
for pharmaceutical applications and in the industrial productions 
of modern materials. For example, the hydration of Portland ce-
ment to form concrete is a centerpiece of the modern construction 

industry. This hydration is highly exothermic, similar to other 
hydration reactions, and part of the chemistry of which is sum-
marized in the following reaction (reaction 6):

         2Ca3SiO5     + 7H2O → (6)
tricalcium silicate + water → 
          3CaO2SiO2∙4H2O      +     3Ca(OH)2.
     calcium silicate hydrate + calcium hydroxide (portlandite) 

Tricalcium silicate is the main constituent of Portland cement 
accounting for 50–70% of the final mass, and it is one of the most 
reactive silicates in water (Pustovgar et al. 2016). Its hydration 
is responsible for the setting and initial strengthening of cement 
paste. Similar silicate hydration reactions, albeit very different in 
their molecular dynamics, are prevalent in natural and technologi-
cal processes.

In addition to hydration reactions, dehydration reactions also 
play a key role in modern organic chemistry (Fig. 3). For example, 
the production of bioplastics and Plexiglass both rely on dehydra-
tion steps. One of the most commonly used routes to produce 
bioplastic from biomass is the dehydration of bioethanol to eth-
ylene (Fig. 3a). Bioethanol can be produced industrially from the 
fermentation of biological waste products or directly using algae 
feedstock (Jones and Mayfield 2012). Once obtained, bioethanol 
can be further dehydrated to produce ethylene, the basic monomer 
for the production of polyethylene plastics the condensation of a re-
ducing sugar or polysaccharide with protein or peptide, commonly 
known as Maillard reaction (Pastoriza et al. 2018). The Maillard 
reaction (Fig. 3d) is a complex set of addition, elimination, and 

Figure 3. Examples of dehydration reactions in everyday life. (a–c) Pathway of industrial production of polyethylene plastic (b) and Plexiglass (c) 
through dehydration of bioethanol and methyl-propionate. Ethanol can be produced from renewable biomasses through fermentation (a). Following 
a dehydration reaction, ethanol can be converted in ethylene (b), which can be used for bioplastic production. Ethylene can be further processed to 
become methyl-propionate and later methyl-methacrylate through a series of reactions that include a key dehydration step. The MMA (c) becomes the 
precursor for the industrial production of Plexiglass. (d) Simplified reaction pathway of the Maillard reaction. The first step is a dehydration reaction 
involving carbohydrates and the amine groups of proteins to form glycosylamine. The diversity of Maillard reaction products obtained is responsible 
for the flavor in a large number of food and beverages including beer, wine, and grilled meat.
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rearrangement reactions that occur between reducing sugars and 
amines. Dehydration of simple sugars, for instance aldoses, start 
the process leading to N-substituted glycosamide, which undergo 
Amadori rearrangement leading to 1-amino-1-deoxy-2-ketones. 
Furthermore, dehydration reactions of the latter lead to intermedi-
ate compounds that are part of the formation of brown substances 
in foods and beverages, including flavors.

Implications
Life on our planet needs carbon, water, and habitable conditions 

that are maintained through the long-term exchanges between the 
deep Earth and the atmosphere and hydrosphere driven by plate 
tectonics. Hydration/dehydration reactions play a central role in this 
process and accompany the most fundamental steps of the Earth 
evolution from its earliest stages of formation to the everyday needs 
of modern society. Even though some specific conditions discussed 
in this review are peculiar to Earth, most notably plate tectonics and 
life, water is among the most important targets for current and future 
planetary explorations and search for life beyond Earth. The role 
and the understanding of hydration/dehydration reactions, as well 
as the integration of geological, biological, and anthropic processes 
involving them, is therefore key in view of human habitation on 
other planets. As an example, Scott and Oze (2018) discuss the 
possibility to produce fuel and concrete in situ on Mars through 
hydration and dehydration reaction including serpentinization of 
Martian rocks, and the processing of its byproducts. A broader 
understanding of the role of hydration and dehydration reaction 
in controlling planetary process, habitability, and the emergence 
and evolution of biochemistry will certainly lead to more profound 
insight regarding the coevolution of the geosphere and biosphere.
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