American Mineralogist, Volume 105, pages 1589–1592, 2020

Letter

Synthesis and crystal structure of Pb-dominant tourmaline

Oleg S. Vereshchagin^{1,*}, Bernd Wunder², Sergey N. Britvin^{1,3}, Olga V. Frank-Kamenetskaya¹, Franziska D.H. Wilke², Natalia S. Vlasenko⁴, and Vladimir V. Shilovskikh^{4,†}

¹Institute of Earth Sciences, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russia ²GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany

³Nanomaterials Research Center, Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Murmansk Region, Russia ⁴Centre for Geo-Environmental Research and Modelling (Geomodel), Saint Petersburg State, University, Ulyanovskaya Str. 1, 198504 St. Petersburg, Russia

ABSTRACT

Pb-dominant tourmaline was synthesized at 700 °C and 200 MPa in two hydrothermal experiments in the system MgO-Al₂O₃-B₂O₃-SiO₂-PbO-H₂O (run OV-4-2) and MgO-Al₂O₃-B₂O₃-SiO₂-PbO-CaO-Na₂O-H₂O (run OV-5-3), respectively. Run OV-4-2 forms needle-like (lengths up to 7 µm), lead-rich (up to 13.3 wt% PbO) crystals that are chemically homogeneous. Run OV-5-3 forms columnar (lengths up to 400 µm) crystals that are chemically zoned (Pb-rich cores, up to 14.7 wt% PbO), and Pb-poor rims, ~2 wt% PbO). Additional phases that form in trace amounts are Pb-feldspar, quartz, diaspore (in OV-4-2) and talc, mullite, spinel, quartz (in OV-5-3). Single-crystal structure refinement (SREF) of the central zone of Pb-rich tourmaline from the run OV-5-3 proves that Pb²⁺ cations occupy the *X*-site in the tourmaline structure. The unit-cell parameters of the studied tourmaline are: a = 15.9508(10) Å, c = 7.2024(6) Å. The formula derived from SREF results of this Pb-rich tourmaline is ^{*x*}(Pb_{0.63} $\square_{0.37}$) ^{*y*}(Al_{1.71}Mg_{1.29}) ^{*z*}(Al_{5.04}Mg_{0.96}) ^{*T*}(Si_{6.00}O₁₈) (BO₃)₃ ^{*v*}(OH)_{3.00} ^{*W*}(O_{1.00}). Accordingly, the studied crystal is a Pb-analog of hypothetical "oxy-uvite," and thus referred to here as "Pb-oxy-uvite." Similarities between (1) the paragenesis of Minh Tien tourmaline, and (2) the final experimental phase assemblages observed here, indicate comparable *P*-*T* conditions of formation.

Keywords: Tourmaline, Pb, crystal chemistry, lead end-member, synthesis