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abstRact

Fe-bearing phase E coexisting with ringwoodite and wadsleyite has been synthesized at near-
geotherm temperatures in hydrous KLB-1 peridotite compositions held at 18 and 19 GPa, and 1400 °C 
for 27 h. The long heating duration time of syntheses implies that phase E can be a stable component 
of the mantle under hydrous conditions. Single-crystal X-ray diffraction analyses show that the M1 
octahedral site is 72.1–75.2 at% occupied, whereas the M2 and tetrahedral Si sites are 2.4–2.9 at% 
and 18.9–19.8 at% occupied, respectively. The M1 site occupancies show a positive correlation with 
Fe/Mg molar ratios, indicating that Fe mainly occupies the M1 site in the phase E structure. High-
pressure Raman spectroscopy shows that the framework Raman frequencies of Fe-bearing phase E 
increase continuously with increasing pressures up to 19 GPa at room temperature, and there is no 
indication for a major change in the crystal structure. If transition-zone regions adjacent to subducting 
slabs are hydrated by fluids generated at the top of the lower mantle, Fe-bearing phase E is expected 
to occur at wadsleyite-ringwoodite phase transition boundary (about 520 km) as an important phase 
for incorporating water.
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intRoDuction

Phase E is one of the dense hydrous magnesium silicates 
(DHMS) that may play a significant role in the global hydrogen 
cycle as water carriers in subducting slabs (e.g., Ohtani et al. 
2004). Phase E was discovered by high-pressure phase relation 
studies in the system Mg2SiO4 + 20 wt% H2O (Kanzaki 1991). 
Previous studies demonstrated that phase E can contain up to 18 
wt% H2O and can occur at a depth of 350 km to about 500 km 
within subduction-zone environments (e.g., Frost 1999; Shieh et 
al. 2000). In addition, a possible natural phase E was observed in 
olivine from kimberlitic nodules as nanometer-sized inclusions 
(Khisina and Wirth 1997).

As a consequence of unit-cell scale disorder, phase E has broad 
compositional and density variations (Kanzaki et al. 1992; Kudoh 
et al. 1993). In the MgO-SiO2-H2O system, phase E is stable along 
subduction geotherms through the base of the upper mantle and the 
top of the transition zone (e.g., Iwamori 2004). Frost and Fei (1998) 
showed that phase E can coexist with super-hydrous phase B at 
17.5 GPa and 1100 °C. In the CaO-MgO-Al2O3-SiO2-H2O pyrolite 
system, phase E was observed at 12 GPa and 1050 °C coexisting 
with hydrous wadsleyite (Litasov and Ohtani 2003). Kawamoto 
(2004) reported the stabilities of hydrous phases in water-bearing 
(13.6 wt% H2O) CaO-MgO-FeO-Al2O3-TiO2-SiO2 system, 
showing that Fe-bearing phase E can coexist with wadsleyite, 
stishovite, and garnet at 17 GPa and 1000 °C. Kawamoto et al. 
(1995) determined the stability field of phase E in H2O-saturated 

KLB-1 peridotite (CaO-MgO-FeO-Al2O3-TiO2-SiO2-H2O system) 
at 6 to 15 GPa, indicating that Fe-bearing phase E can coexist 
with wadsleyite, garnet, and enstatite at mantle geotherm (15.5 
GPa and 1400 °C).

Phase E has a unique cation-disordered crystal structure 
(Fig. 1), which has been solved and refined in space group R3m 
(e.g., Kudoh et al. 1993). The structure contains layers stacked in 
a rhombohedral arrangement with brucite-type units. The layers 
are cross-linked by Si in tetrahedral coordination, Mg in octahe-
dral coordination, as well as hydrogen bonds (e.g., Kanzaki et 
al. 1992; Kudoh et al. 1993; Tomioka et al. 2016). Single-crystal 
X-ray diffraction analyses indicated that the interlayer octahedra 
(M2 site) and tetrahedra (Si site) are only about 1–2 and 19–20 
at% occupied, respectively. To avoid sharing faces with interlayer 
tetrahedra, there are also vacancies (up to 34 at%) within the in-
tralayer octahedra (M1 site) (Kudoh et al. 1993; Uchiyama et al. 
2011). High-pressure Raman spectroscopy of pure-Mg phase E 
indicated that all framework modes shift continuously with in-
creasing pressures to 19 GPa and there is no indication for a phase 
transition or amorphization of the structure (Kleppe et al. 2001). 
For high-pressure infrared spectroscopy, according to Shieh et al. 
(2009), no structural phase transition or amorphization was found 
for pure-Mg phase E to pressures up to 40 GPa.

To better understand the stability, composition, and crystal 
structure of Fe-bearing phase E, high-pressure sample syntheses, 
electron microprobe analyses, single-crystal X-ray diffraction 
analyses, and high-pressure Raman spectroscopy were conducted 
in this study.
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