Stability, composition, and crystal structure of Fe-bearing Phase E in the transition zone

LI ZHANG^{1,2,3,*}, JOSEPH R. SMYTH², TAKAAKI KAWAZOE⁴, STEVEN D. JACOBSEN⁵, JINGJING NIU³, XUEJING HE³, AND SHAN QIN³

¹School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
²Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, U.S.A.
³School of Earth and Space Sciences, Peking University, Beijing, 100871, China
⁴Department of Earth and Planetary Systems Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
⁵Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois 60208, U.S.A.

ABSTRACT

Fe-bearing phase E coexisting with ringwoodite and wadsleyite has been synthesized at neargeotherm temperatures in hydrous KLB-1 peridotite compositions held at 18 and 19 GPa, and 1400 °C for 27 h. The long heating duration time of syntheses implies that phase E can be a stable component of the mantle under hydrous conditions. Single-crystal X-ray diffraction analyses show that the M1 octahedral site is 72.1–75.2 at% occupied, whereas the M2 and tetrahedral Si sites are 2.4–2.9 at% and 18.9–19.8 at% occupied, respectively. The M1 site occupancies show a positive correlation with Fe/Mg molar ratios, indicating that Fe mainly occupies the M1 site in the phase E structure. Highpressure Raman spectroscopy shows that the framework Raman frequencies of Fe-bearing phase E increase continuously with increasing pressures up to 19 GPa at room temperature, and there is no indication for a major change in the crystal structure. If transition-zone regions adjacent to subducting slabs are hydrated by fluids generated at the top of the lower mantle, Fe-bearing phase E is expected to occur at wadsleyite-ringwoodite phase transition boundary (about 520 km) as an important phase for incorporating water.

Keywords: Phase E, transition zone, X-ray diffraction, high-pressure Raman spectroscopy