American Mineralogist, Volume 104, pages 857-868, 2019

Estimation of radiation damage in titanites using Raman spectroscopy

BEATRIX MURIEL HELLER^{1,*}, NILS KENO LÜNSDORF¹, ISTVÁN DUNKL¹, FERENC MOLNÁR², AND HILMAR VON EYNATTEN¹

¹Geoscience Center, Sedimentology and Environmental Geology, University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany ²Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland

ABSTRACT

Recent studies have shown that α -damage in titanite influences He diffusivity and thus the closure temperature of the (U-Th)/He system in titanite. We compare different methods for measuring the α -dose in titanite by Raman spectroscopy. Raman spectra of randomly oriented titanite fragments from the Archean Karelian domain in eastern Finland along with some well-studied young titanites and U-Pb standard reference materials were analyzed and related to the concentration of α -emitting elements (U and Th) that generated damage in the respective grains. Automated curve-fitting was performed by the IFORS software and different curve-fitting protocols were tested and compared.

The Raman bands at 424 and 465 cm⁻¹ show a good correlation of full-width at half maximum (FWHM) and position with the α -dose. However, these bands are not always present because titanite is highly anisotropic implying that Raman spectra are sensitive to orientation. The intensity-weighted mean FWHM (iw-FWHM) of all Raman bands of a spectrum proves to be the most robust measure of the α -dose. A simplified fitting approach considering 15 peaks is sufficient to describe the accumulated α -dose. For α -doses below $5 \times 10^{16} \alpha/g$ the iw-FWHM is independent of α -dose and ranges from 25 to 50 cm⁻¹. Above this value the iw-FWHM increases linearly with increasing α -dose up to $3 \times 10^{18} \alpha/g$. The linear correlation can be described as iw-FWHM[cm⁻¹] $\approx 39(\pm 1.2)$ [cm⁻¹] $+ 3.84(\pm 0.61, -0.26) \times 10^{-17}$ [cm⁻¹/(α/g]] $\times \alpha$ -dose[α/g]. The approach provides a pre-selection method to optimize the range of α -doses of titanite crystals to be dated by (U-Th)/He thermochronology.

Keywords: Titanite, (U-Th)/He, metamictization, radiation damage, α -dose, Raman spectroscopy, thermochronology