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AbstrAct

Quantitative X-ray mapping using an electron probe enables quantitative evaluation of inhomoge-
neities within rocks. Recent studies have proposed methods to construct quantitative chemical maps 
by combining X-ray maps with referential spot analyses within a mapped area. These approaches 
address matrix effects by assuming each pixel in the mapped area represents a single phase. In such 
cases, the spatial resolution of the X‑ray maps must be sufficiently high to separate mineral phases.
This study proposes a new procedure to reliably quantify centimeter-scale X-ray maps even if the 
maps contain an ineligible number of pixels analyzing multiple phases because of a large mapping 
probe diameter. Such multi‑phase pixels are statistically classified into their constituent phases by 
introducing a distribution-based clustering analysis. Furthermore, based on referential spot analyses, 
we implemented corrections for matrix effects and the backgrounds of single- and multi-phase pixels. 
Our technique, termed QntMap, was developed as an open source R package and distributed on a 
social coding platform, GitHub (https://github.com/atusy/qntmap).

We applied QntMap to calculate local bulk compositions within an ultrahigh-pressure eclogite 
from Nové Dvory, Czech Republic. The studied sample is a garnet-rich bimineralic eclogite that 
includes a 3 mm thick pyroxene-rich layer. A mapped area is approximately 3 × 1 cm in size and 
oriented normal to the layer. A profile normal to the layer shows increases in Cr2O3 (0.0 to 0.3 wt%) 
and XMg [Mg/(Fe+Mg) = 0.5 to 0.8] from the garnet-rich matrix toward the pyroxene-rich layer. A 
large variation in XMg and high-Cr2O3 contents in the pyroxene-rich layer are inconsistent with a 
cumulate origin. We suggest that the pyroxene-rich layer was derived from a pyroxenitic melt that 
intruded the eclogite.

Keywords: Bohemian Massif, compositional map, electron probe, eclogite, pyroxenite, ultrahigh 
pressure, X-ray map

introduction

An electron probe microanalyzer (EPMA) is a common tool 
to analyze chemical compositions of minerals. Its use in modern 
petrology allows for quantification of chemical heterogeneities 
or textures within rocks, thereby enabling the rock history to be 
more accurately determined. By describing chemical textures of 
rocks at an appropriate scale, their pressure–temperature evolu-
tion and history of mass transfer may be deduced.

Two common applications of an EPMA are quantitative 
spot analysis and X-ray mapping. The former collects an X-ray 
signal from an unknown sample that is compared to a standard 
signal intensity to quantify elemental concentrations. The latter 
is employed to create X-ray intensity images (X-ray maps) to 

describe the qualitative distribution of elements. X-ray maps also 
show relationships between micro-textures and variations in the 
chemical composition of minerals (zoning), which reflect the 
conditions of crystallization (e.g., Marmo et al. 2002; De Andrade 
et al. 2006; Vidal et al. 2016; Ganne et al. 2012; Lanari et al. 
2014; Trincal et al. 2015; Lanari and Engi 2017). Theoretically, 
X-ray intensities collected from a sample surface are proportional 
to the concentration of the elements in an excitation volume for 
both point and mapping analyses. As such, quantitative X-ray 
mapping is a possible application of EPMA analysis. However, 
creating a quantitative X-ray map by gathering quantitative point 
analyses requires an unrealistically long period of time because 
a typical quantitative point analysis requires ca. 1 min for 10 
elements (e.g., Si, Ti, Al, Cr, Fe, Mn, Mg, Ca, Na, and K). Under 
these conditions, approximately one week would be needed to 
create a 100 × 100 pixel map.

Previous studies have proposed other means to construct 
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quantitative X-ray maps within a reasonable time frame (Tracy 
et al. 1976; Clarke et al. 2001; Tinkham and Ghent 2005; De 
Andrade et al. 2006; Lanari et al. 2014, 2018). Among them, 
XMapTools (Lanari et al. 2014, 2018) provides a reliable ana-
lytical procedure by combining mapping results obtained at a 
higher current intensity with referential spot analysis measured 
within a mapped area. XMapTools addresses matrix effects by 
implementing (1) classifying mineral phases based on mapping 
data and (2) converting X-ray intensities into calibrated mass 
concentrations for each mineral phase by comparing the X-ray 
map to referential spot analysis within a mapped area. Both steps 
assume each pixel of the mapped area is attributed to a single 
mineral phase and require a sufficiently small mapping-beam 
diameter. Although XMapTools is powerful in the analysis 
of micro-textures or coarse-grained centimeter-scale textures 
(Lanari and Engi 2017), a problem arises when the X-ray map 
employs a large step size to reduce mapping time. When a 
mapped area contains fine-grained textures such as accessory 
minerals and symplectite, a small beam diameter with a large step 
size may miss grains that were analyzed as an internal standard, 
particularly for inequigranular textures. In addition, such low-
resolution maps are inadequate for use in discussing variations 
in local bulk compositions because of possible underestimation 
of the abundance of fine-grained phases.

This study provides a method to quantify X-ray maps with 
a scalable probe diameter, which is particularly powerful in 
analyzing centimeter-scale areas containing fine grains within 
a reasonable time frame (within a few days in the present case 
study but potentially within a day). Enlarging the probe diameter 
increases the number of pixels that traverse the grain boundaries 
(i.e., multi-phase pixels) that cannot be treated properly under the 
assumption that each pixel is to be attributed to a single phase. 
To overcome this limitation, we introduced a distribution-based 
cluster analysis (Titterington et al. 1985), an unsupervised ma-
chine learning technique, to evaluate the mixed content in such 
pixels. Evaluating the content of the multi-phase pixels enables 
reliable estimation of the relationship between the X-ray map 
and referential spot analysis. The following sections describe 
the principle of the new method to compile reliable quantitative 
maps. As a case study, we applied the proposed method to an 
ultrahigh-pressure eclogite collected from the Moldanubian Zone 
of the Bohemian Massif (Nové Dvory, Czech Republic). The 
results show that centimeter-scale quantitative chemical mapping 
is a powerful tool for evaluating millimeter-scale compositional 
variations in rocks.

methodologY
The fundamental idea behind our quantitative electron probe chemical map-

ping technique follows internal standardization methods (De Andrade et al. 2006; 
Lanari et al. 2014, 2018). Thus, our technique requires referential spot analysis 
of all mineral phases within an area to be mapped, X-ray mapping of the area 
(both using EPMA), and additional data processing by computer. During the data 
processing, a cluster analysis was performed on map data to address variation in 
the matrix effects, after which a regression analysis was used to convert mapping 
X-ray intensities to mass concentrations. The data processing was completed us-
ing QntMap, an open source R package developed in this study and distributed on 
a social coding platform, GitHub (https://github.com/atusy/qntmap accessed on 
February 10, 2018). QntMap was designed to address text files in the format of the 
output by JEOL EPMA. However, the proposed algorithm can be applied to any 
EPMA results by suitably preparing the required files (Supplemental1 Table S1).

EPMA analysis
This study employed an EPMA with five wavelength-dispersive X-ray detectors 

(JEOL JXA-8105) at the Department of Geology and Mineralogy, Kyoto University, 
Kyoto, Japan. Quantitative point analysis was performed with 15 kV of accelerating 
voltage, 10 nA of probe current, 3 μm of probe diameter, and 10 and 5 s of dwell 
time for counting the peak and background, all of which are ordinary employed 
analytical conditions. X-ray mapping was performed with 15 kV of accelerating 
voltage, 100 nA of probe current, 15 μm of probe diameter, 20 μm of step size, 
and 120 ms of dwell time. The probe current and the dwell time follows that of 
De Andrade et al. (2006) and enables high precision without significant damage 
of matrices. The probe diameter was slightly smaller than the step size to account 
for the X-ray excitation volume. Dead time corrections for mapping data were 
performed using software in EPMA.

Map data clustering
X-ray maps inevitably contain a certain number of multi-phase pixels, whose 

chemical compositions are a combination of chemical compositions of the phases 
weighted by their abundance. In our method, the abundance of phases in each pixel 
is estimated by a soft cluster analysis (Fig. 1), which assigns membership grades to 
each data point to express ratios of clusters. The membership grades are interpreted 
in terms of mass ratios of the phases in the multi-phase pixels because the cluster 
analysis is applied to mapping data reflecting chemical compositions (X-rays and 
backscattered electrons). This approach is in contrast to hard cluster analyses, such as 
the k-means clustering algorithm (KCA; MacQueen 1967) employed by XMapTools, 
which assigns exactly one cluster to each data point. Although a KCA is a simple 
and commonly used algorithm and is known to be a powerful tool for geochemical 
studies (e.g., Iwamori et al. 2017), it results in overestimation or underestimation of 
chemical components in multi-phase pixels. For example, consider a multi-phase 
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Figure 1. Schematic procedures employed to address matrix effects 
by hard clustering and soft clustering. Hard clustering assumes that each 
pixel represents a single phase and results in over- or underestimation of 
the chemical composition of pixels composed of multiple phases. On the 
other hand, soft clustering classifies multi‑phase pixels into constituent 
phases and enables an accurate estimation of the chemical composition. 
The mass ratios of rutile and quartz were calculated by assuming densities 
of 4.25 and 2.62 g/cm3, respectively.
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pixel consisting of 75% quartz (SiO2) and 25% rutile (TiO2) as shown in Figure 1. 
Hard cluster analysis assigns such pixels to a single cluster of quartz and provides 
100% SiO2 as the corresponding composition. In contrast, a soft cluster analysis 
evaluates the membership of the constitutive clusters and allows classification of 
the pixel as a combination of mixed phases.

Among various soft-clustering algorithms, QntMap implements a distribution-
based clustering algorithm (DBCA) (Titterington et al. 1985). In a DBCA, a data set 
is considered to comprise a given type of multivariate mixture probability distribution 
(e.g., Gaussian or Poisson) and clusters are considered to be composed of groups 
of data belonging to each distribution in the mixture. Estimations of distribution 
parameters and data point assignment to clusters are performed iteratively until 
convergence is achieved. QntMap employs the implementation of DBCA described in 
Witten (2011) that assumes input data comprise a mixed Poisson distribution, which is 
appropriate for EPMA maps that count photons of X-rays and backscattered electrons.

As an initial guess, data from a referential spot analysis are set to initial cluster 
centers, and mapping data points are assumed to belong to the nearest cluster centers. 
This assumption enables rapid convergence over a small number of iterations. The 
DBCA algorithm we employed (Witten 2011) includes a power transformation to 
account for overdispersed data. Thus, solid-solution phases with small compositional 
variation would be correctly partitioned into similar clusters. However, phases with 
significant compositional variation or zoning (e.g., >5 wt%) or multi-modal patterns 
on a histogram may be treated as multiple phases, such as garnet1 and garnet2.

In addition to evaluating membership degrees, a DBCA overcomes other limita-
tions in a KCA. A KCA is a special case of a DBCA that assumes that a data set is 
composed of a mixture of multivariate Gaussian distributions that have an isotropic 
shape in multidimensional space, do not overlap, and whose integrals over the entire 
space yield similar values. Thus, a KCA does not work well when a population of 
clusters varies significantly (Guha et al. 1998), as shown in Figure 2a, which is a 
common case for modal compositions of rocks. The use of a KCA is also inappropriate 
when the shapes of groups are anisotropic (Nagy 1968), as shown in Figure 2b, which 
may arise because of solid solutions in minerals or differences in the sensitivities 
of the X-ray detectors. These factors commonly result in a KCA partitioning major 
phases into too many clusters and minor phases into clusters representing different 
mineral phases. A DBCA is generally free of the assumptions made in a KCA (Fig. 
2) and is better able to distinguish mineral phases (Fig. 3).

Conversion of mapping X-ray intensities to mass 
concentrations

Quantitative EPMA analyses are based mainly on a linear relationship between 
the X-ray intensities of unknown samples and known standards, employing well-
established empirical models such as ZAF (e.g., Heinrich 1991). The relationship 

between concentrations and X-ray intensities for the i-th element is usually written 
as follows:

C
i

unk
=
I
i,net,qnt

unk

I
i,net,qnt

std
C
i

std
G  (1)

where, C represents the mass concentration, I represents the X-ray intensity, and 
G is the correction factor for the atomic number, absorbance, and fluorescence 
derived from coexisting elements. The superscripts “unk” and “std” indicate 
unknown samples and standard materials, respectively. The subscripts “i,” “net,” 
and “qnt” indicate the element, the net X-ray intensity (calculated as peak minus 
background), and quantitative analysis, respectively. Previous studies have showed 
that this simple linear relationship can be also adapted to a combination of X-ray 
maps and referential spot analyses performed within a mapped area (De Andrade 
et al. 2006; Lanari et al. 2014, 2018). These studies converted mapped peak X-ray 
intensities to concentrations by using the following calibration curve:
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where, A is a correction factor based on the mineral phases and elements analyzed. 
The subscripts “pk,” “bg,” and “map” indicate the peak X-ray intensity, the back-
ground X-ray intensity, and mapping analysis, respectively. The term A represents 
the ratio of the results of the referential spot analyses (Ci

unk) in Equation 1 and the 
net X-ray intensity of the mapping analysis; thus, the effects of the atomic number 
correction and other factors (i.e., G in Eq. 1) are included.

Previous studies have proposed background corrections. De Andrade et al. 
(2006) directly analyzed background intensity with mapping conditions; however, 
this approach requires additional mapping analysis. Donovan et al. (2016) employed 
a mean atomic number (MAN) correction that required X-ray mapping of not only 
the elements of interest but of all the major elements. XMapTools (Lanari et al. 
2018) used the variability observed in mass concentrations of internal standards, 
though it cannot be applied to phases/elements of low chemical variability, i.e., 
minor elements such as chromium in mafic rocks.

Considering the effects of multi-phase pixels and background corrections, the 
fundamental idea of Equation 2 is as follows:
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where, X is the abundance of a phase in a pixel whose sum is 1, α is the ratio of 
mass concentration and net X‑ray intensity from spot analysis, β is a correction 
factor relating the difference in analytical conditions between spot and map 
analyses, and γ is a correction factor for background X‑ray intensities. Refer to 
Supplemental Material A1 for the derivation of Equation 3. As the membership 
degrees are interpreted as mass ratios, not volume ratios, density correction was 
considered to be discarded.

In Equation 3, α is a correction factor dependent on the mineral phase and 
element and represents the ratio of mass concentration to quantitative net X-ray 
intensity (i.e., the slope of the regression lines shown in Fig. 4). In other words, α 
corresponds to C

i

std
G / I

i,net,qnt

std  in Equation 1. Although α depends on matrices, 
it can often be approximated as a constant for each phase as shown in Figure 4, 
in which the relationship between the net X-ray intensities of the referential spot 
analysis and the corresponding result of MgO concentrations are depicted. For each 
phase, the relationship can be explained by a single straight line passing the origin. 
When phases show considerable variation in MgO concentration, MgO-poorer 
data points tend to occur on the left side of the regression lines and MgO-richer 
points on the right side (Figs. 4c–4d). Yet, the regression lines overlap with the 
95% confidence intervals of each data point, indicating the relationships can be 
explained by single calibration curves for each phase.

In Equation 3, β is a correction factor that depends on the element, represent-
ing the ratio of quantitative to qualitative peak X-ray intensities (i.e., the slope 
of the regression line shown in Fig. 5). Its product with α (= αβ) corresponds 
to A in Equation 2. β is independent from the matrix effects because the ratio of 
quantitative to qualitative peak X-ray intensity is determined from the difference 
in probe current, dwell time, and probe diameter. The difference in probe diam-
eter is less significant than that of the others, however, as a larger probe diameter 
decreases X-ray intensities because of the geometrical relationships between the 
X-ray excited region and X-ray detector. Figure 5 shows the relationship between 
MgO peak X-ray intensities from referential spot analysis and X-ray mapping 
from identical coordinates within a natural sample. Most data points occur on 
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Figure 2. Comparison of the KCA and DBCA in terms of clustering 
synthetic data. The DBCA result is shown by the dots whose colors 
indicate the clusters with the highest membership grades. (a) Synthetic 
data contains three distinct groups in which one group contains more 
data points than the others. The KCA partitions the largest group into two 
clusters and integrates the others into a single cluster. The DBCA clusters 
the data according to the apparent groups in the data. (b) Synthetic data 
containing two groups with ellipsoidal distributions. The KCA clusters 
the data such that the clusters become more isotropic. The DBCA clusters 
the data according to the apparent groups in the data.
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Figure 4
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Figure 4. MgO mass concentrations vs. net X‑ray intensities for various mineral species. Error bars in this figure and others are 95% confidence 
intervals based on the Poisson process. See Supplemental1 Figure S1 for other elements. (a) Minerals poor in MgO (<1 wt%), (b) minerals rich in 
MgO (>1 wt%), (c) garnet, and (d) ilmenite. Data points from different phases occur on different lines. The slopes of the lines are equivalent to αM
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Figure 3. Comparison of KCA and DBCA clustering for mapping data of eclogite into 10 clusters of mineral species. Abbreviations of mineral 
names follow Kretz (1983). (a) Photograph of an eclogite sample. The pinkish to reddish grains are garnet and greenish grains are omphacite. The dark 
area contains fine‑grained minerals. Garnet and omphacite are more abundant than the other mineral species (amphibole, apatite, diopside, hematite, 
ilmenite, plagioclase, rutile, and spinel) in the mapped area. (b) The KCA tends to combine major phases such as garnet and omphacite into multiple 
clusters, while the minor phases are integrated into single clusters. A KCA with more clusters continues to partition major phases into more clusters and 
is not helpful in distinguishing minor phases. (c) A DBCA properly partitions mineral species as clusters. The color of pixels in the map indicates the 
clusters with the highest membership degree.
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a single line, regardless of mineral species. The outliers are fine-grained phases 
within symplectites, such as amphibole, diopside, and plagioclase. Mapped pixels 
among the outliers are analyzed multiple phases in addition to the that targeted by 
referential spot analysis. As outliers belong to multi-phase pixels, they yield low 
membership grades of clusters that correspond to phases analyzed in the referential 
spot analyses. Thus, β is estimated for each element by a weighted least‑squares 
regression that weighs data points by the membership grade of the phase analyzed 
in the referential spot analyses, or by 0 for those that are regarded as very fine 
grains during the exploration of spots analyzed as a reference. Proper weighing 
enables confident estimation of β.

The term γ is a correction factor for background X‑ray intensities, estimated as 

1

N
phase

j=1

N
phase

∑ I
i,j,bg,qnt

unk,phase

,

and it depends on both the element and phase. N is the number of quantified points 
for a certain phase and j indicates the j-th quantified point. This formulation as-
sumes that the matrix effects on backgrounds are approximately constant. γ values 
divided by β values (= γ/β) correspond to Ii,bg,map

phase in Equation 2. Figure 6 shows 
the relationships between concentrations and background intensities for MgO 

in various phases. Although least-squares regression curves (blue dashed lines) 
show positive or negative slopes and indicate the presence of matrix effects on 
backgrounds, the average value indicated by the red line overlaps with the 95% 
confidence intervals of most points. Thus, we employed average values for the 
background of each phase as γ. Our approach provides similar background values 
to those of Lanari et al. (2018) when considerable variations are recognized in the 
mass concentration of the elements of interest.

As βiIi,pk,map
unk,phase  and γi

phase are equivalent to the peak and background 
X-ray intensities under quantitative analytical conditions, respectively, 
β
i
I
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unk,phase−γ
i

phase provides the net X-ray intensity under X-ray mapping condi-
tions. This formulation is considered to be valid because both peak and background 
X-ray intensities are proportional to the probe current. In addition, this formulation 
is robust against multi-phase pixels. As shown in Figure 7, the calibration curves of 
omphacite (a major phase of the studied sample) and diopside (mostly observed as 
fine-grained symplectite) are based on both Equations 2 and 3. They are expected 
to be identical because both omphacite and diopside belong to the clinopyroxene 
group and the relationship between mass concentrations and mapping peak intensi-
ties is fairly similar. Our proposed method provides approximately identical curves 
(Fig. 7b), while the simple least-square calibration using Equation 2 provides 
different calibration curves for diopside and omphacite because of the abundant 
multi-phase pixels containing diopside and other Mg-poor phases (plagioclase).

Our formulation estimated β, which is the standard‑to‑mapping intensity ratio, 
can be affected by multi-phase pixels including the abundance of phases in a pixel. 
Therefore, β for the multi‑phase pixels was correctly estimated in the proposed 
method. β for certain elements can be estimated if there is any coarse‑grained phase 
that contains the element. For example, βMgO can be estimated even if fine-grained 
phases such as amphibole, diopside, and plagioclase are neglected (the black line 
shown in Fig. 5). This means that the proposed method can evaluate the composi-
tions of fine-grained phases such as accessory and symplectite minerals even if the 
coarse grains that are measured as single-phase pixels are not found in the sample.

ApplicAtion oF QntmAp to the nové dvorY 
eclogite

Description of the study area and sample
Here, we provide an example of an application of QntMap 

by analyzing a millimeter-scale bulk chemical variation in an 
ultrahigh-pressure eclogite collected from Nové Dvory in the 
Moldanubian Zone of the Bohemian Massif, Czech Republic. 
Nové Dvory is within a former continental collision zone and 
comprises ultrahigh-pressure metamorphic rocks (Medaris et al. 
2005). Eclogite lenses and garnet pyroxenite layers occur within 
a block of garnet peridotite that is surrounded by felsic gneisses 
(Fig. 8). The eclogite outcrop consists mainly of a garnet-rich 
matrix and subsequent pyroxene-rich layers with a thickness of a 
few millimeters to a couple of centimeters (Medaris et al. 1995).

The study sample is a bimineralic eclogite that contains a 
3 mm thick pyroxene-rich layer. Garnet, omphacite, and rutile 
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Figure 5. Comparison of MgO peak X-ray intensities from 
referential spot analysis and X-ray mapping. See Supplemental1 Figure 
S2 for that of other elements. Note that “Phase” in the legend indicates 
the phase identified by referential spot analysis and does not necessarily 
correspond to the phase targeted by X-ray mapping, owing to possible 
multi-phase pixels. Multi-phase pixels cause horizontal dispersion of data 
points such as those in amphibole, diopside, and plagioclase. The black 
line is illustrated by least-square regressions that weighted outliers less 
in the manner described in the text. The gray dashed line is illustrated 
by least-square regressions that equally weighted all data points. The 
slope of the line is equivalent to βMgO. The outliers are multi-phase pixels 
analyzed during mapping.
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Figure 6. MgO mass concentrations vs. background X-ray intensities for various mineral species. Red lines indicate average values and blue 
dashed lines were drawn by least-square regression. The black curves on the right side of each plot show the distribution of background intensities 
illustrated by kernel density estimation. See Supplemental1 Figure S3 for other elements.
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Figure 8
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Figure 8. Geological map of the studied area modified after Faryad 
et al. (2013). The green is eclogite, the black is peridotite, and the pink is 
gneiss. The red star indicates the location of the studied sample.
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determined by spot analysis and peak X-ray intensities from the 
corresponding coordinates of the X-ray map for MgO in various mineral 
species. Note that “Phase” in the legend indicates the phase identified by 
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phase pixels cause horizontal dispersion of data points such as those in 
amphibole, diopside, and plagioclase. Panel (a) shows calibration curves 
for each phase by least-square regressions based on Equation 2. The 
intercepts (i.e., backgrounds) are fixed at 0. Panel (b) shows calibration 
curves for each phase based on Equation 3 whose Xphase of the phase 
of interest is equal to 1 and that of the others to 0 (e.g., XPl = 1 when 
illustrating the purple line). Slopes and intercepts correspond to αM

pha
gO

seβMgO  
and αM

pha
gO

seγM
pha

gO
se in Equation 3, respectively.

assessed using the root mean square error (RMSE) calculated 
between test data and estimated values. A small RMSE indicates 
that the calibration curve reasonably explains the relationship 
among variables. In MCCV, CV iterations are performed using a 
randomly chosen number of training data. We performed MCCV 
with up to 10 000 iterations for each size of training data set to 
estimate α and β in Equation 3. Figure 10 shows the result of 
MCCV for MgO, using a total of 159 and 354 point analyses for 
the α and β values, respectively. For both α and β, the variance 
and the mean RMSE decrease and approach a constant value 
with increasing size of the training data set at approximately 15 
analyses. Therefore, we concluded that a minimum of 20 point 
analyses of each phase is adequate for analysis using QntMap.

Local bulk chemistry and origin of the Nové Dvory 
eclogite

Based on the quantitative chemical maps obtained by Qnt-
Map, a compositional profile across the layering structure is 
estimated by averaging the compositions of pixels in the same 
column, weighted by the density of phases in each pixel (Fig. 9). 
Approaching the pyroxene-rich layer, the garnet-rich matrix 
shows increases in Cr2O3 (0.0–0.3 wt%), MgO (9–14 wt%), and 
XMg [Mg/(Fe+Mg) = 0.5 to 0.8] and decreases in FeO (15–5 wt%). 
Note that these chemical gradients occur over a shorter distance 
for Cr2O3 (~2 mm) than for MgO and FeO (~12 mm). Concor-
dantly, the Cr2O3 content of garnet and omphacite increases from 
the garnet rich layer (<0.5 wt% in both garnet and omphacite) 
toward the pyroxene-rich layers (up to 4 wt% in garnet and 2 
wt% in omphacite) according to spot analysis.

Figure 11 shows the XMg and Cr2O3 contents of (local) bulk 

represent an eclogite-facies mineral assemblage in the sample 
(Fig. 3). The garnet-rich matrix contains ca. 20–70 vol% garnet 
and 10–50 vol% pyroxene (i.e., omphacite + diopside). The 
pyroxene-rich layer contains up to 10 vol% garnet and 60–70 
vol% pyroxene. Garnet is partially replaced by plagioclase, am-
phibole, diopside, spinel, and hematite, and omphacite is replaced 
by diopside and plagioclase. Rutile is commonly transformed 
to ilmenite. The degree of retrogressive replacement is more 
extreme in the pyroxene-rich layer, in which eclogite facies 
minerals comprise only 30–50 vol%, compared to 50–80 vol% 
in the garnet-rich matrix (Fig. 9). Pyroxene and plagioclase are 
intercalated in the pyroxene-rich layer and are finer-grained 
compared to the garnet-rich matrix.

Validity of quantitative chemical maps
We applied QntMap to an analyzed area of 33 × 10 mm in a 

polished thin section of the studied sample (Fig. 3). The EPMA 
mapping analysis took 55 h. The validity of the calculated quan-
titative chemical maps was strongly dependent on the reliability 
of the calibration curves, which were controlled by the number 
of referential spot analyses. XMapTools empirically requires a 
minimum of 20 referential spot analyses for each phase pres-
ent (Lanari et al. 2014). In this study, the required number of 
referential spot analyses was statistically determined by a Monte 
Carlo (MC) cross-validation (CV; Supplemental1 Fig. S4). First, 
the sample data were divided into a training data set and a test 
data set. Then, a calibration curve was calculated using the 
training data set. We evaluated the validity of the calculation by 
assessing the degree to which the calibration curve satisfied the 
variation in the test data set. The validity of this approach was 
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compositions from the studied sample and eclogite and pyrox-
enite from the Gföhl Unit, a geological unit of Nové Dvory 
(Beard et al. 1992; Medaris et al. 1995; Obata et al. 2006), and 
gabbroic rocks from the South Indian Ridge (Niu et al. 2002). 
Representative local bulk compositions of the garnet-rich matrix 
and pyroxene-rich layer in the Nové Dvory sample were also 
estimated from the shaded areas shown in Figure 9 (Table 1) 
and were plotted as shown in Figure 11. These were chosen to 
avoid chemical gradients. QntMap shows that the garnet-rich 
matrix corresponds well to the Gföhl eclogite and the gabbroic 
rocks, whereas the pyroxene-rich layer corresponds to the Gföhl 
pyroxenites. Medaris et al. (1995) distinguished pyroxenite from 
eclogite on the basis of elemental compositions, with XMg > 0.80, 
Na2O < 0.75 wt%, Cr2O3 > 0.15 wt%, and Ni > 400 ppm. Based 
on these criteria, the garnet-rich matrix of the study sample cor-
responds to the eclogite (XMg = 0.61, Na2O = 1.4 wt%, and Cr2O3 
= 0.03) and the pyroxene-rich layer is intermediate in character 
between the eclogite and pyroxenite (XMg = 0.79, Na2O = 1.60 
wt%, and Cr2O3 = 0.26 wt%).

Previous studies have suggested that the Nové Dvory eclogite 
accumulated from a high-pressure melt (Medaris et al. 1995) 
or was transformed from a lower-pressure gabbroic cumulate 
(Nakamura et al. 2004; Obata et al. 2006). However, the chemi-
cal compositions of garnet and omphacite differ significantly 
between the garnet-rich matrix and pyroxene-rich layer. Perhaps 

Figure 10. Monte-Carlo cross-validations undertaken to examine if 
there was sufficient data to precisely estimate α and β. (a) Test αGrt

MgO and 
(b) test βMgO. The iterations are plotted as black circles and the iteration 
averages are plotted as red circles. In both cases, the variance and average 
of the RMSE converge when trained with more than approximately 
15 data, indicating there was sufficient data to estimate αGrt

MgO and βMgO.
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Figure 9. Profiles of chemical and modal compositions across the layered structure of the studied eclogite using QntMap. The profile shows 

a gradual increase in Cr2O3 and MgO, and a gradual decrease in FeO from the garnet-rich matrix to the pyroxene-rich layer. The black dashed 
lines indicate apparent boundaries between the garnet-rich matrix and pyroxene-rich layer. Local bulk compositions of the pyroxene-rich layer and 
garnet-rich matrix were estimated from the shaded areas (Table 1).
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Figure 11. Scatter plot showing Cr2O3 vs. Mg/(Mg +Fe) of (local) 
bulk compositions. Local bulk compositions from the garnet-rich matrix 
and the pyroxene-rich layer in the studied eclogite were estimated from the 
shaded areas shown in the figure. Bulk compositions of the Gföhl eclogite 
(Beard et al. 1992; Medaris et al. 1995; Obata et al. 2006), Gföhl pyroxenite 
(Medaris et al. 1995), and gabbroic rocks from the South Indian Ridge 
(Niu et al. 2002) were determined using XRF or wet-chemical analyses. 
The compositions of the garnet-rich matrix were within the range exhibited 
by the gabbroic rocks, whereas those of the pyroxene-rich layer yielded 
high-Cr2O3 contents and the XMg of pyroxenite.

the layering structure was produced by metasomatism triggered 
by different source materials, and thus we suggest a combination 
of the aforementioned two hypotheses; i.e., that the Nové Dvory 
eclogite was transformed from a subducted gabbroic rock that 
was partially intruded and metasomatized by pyroxenitic melt 
under high-pressure conditions. This scenario explains the rare 
occurrence of pyroxene-rich layers in the Nové Dvory eclogite 
and the millimeter-scale variations in XMg and Cr2O3. The chemi-
cal gradient occurred as a result of diffusion and corresponding 
chemical reactions during intrusion of pyroxenitic melt. The 
chemical gradient of MgO occurred along a longer distance than 
that of Cr2O3 because of the higher diffusivity of Mg compared 
to Cr and possible later modification by fluid activities during 
amphibolitization. Previous studies identified millimeter- to 
centimeter-thick pyroxenite layers from the host peridotite body 
and concluded that they were high-pressure cumulates from a 
basaltic melt based on trace elements and isotopes (Medaris et al. 

1995; Svojtka et al. 2016). These inferences are also consistent 
with our data.

implicAtions

QntMap potentially provides high-quality mineral distribu-
tion maps and quantitative chemical maps at a centimeter cale 
based on EPMA data. Scalable lateral resolution in X-ray maps 
enables an increase in the probe current, as less lateral resolu-
tion produces less damage to the sample at a fixed probe current 
and dwell time. This means that the rate of qualitative mapping 
can be further increased from the current application (18 h/cm2) 
by reducing the dwell times at higher probe currents. QntMap 
is also powerful in millimeter-scale mapping of fine-grained 
textures such as symplectites, because multi-phase pixels occur 
when lateral resolutions are not sufficiently high. The maximal 
lateral resolution is defined by the quantitative point analyses, 
typically a few micrometers. For bulk chemistry, X-ray fluo-
rescence (XRF) is a conventional technique; however, it is a 
destructive method and is not easily applied to millimeter-scale 
compositional domains within rocks. QntMap preserves textural 
information and thus is powerful not only when domains are 
very small, but also when domains are transitioning or showing 
complex shapes. QntMap is a highly scalable technique to create 
quantitative electron probe chemical maps.

The application of QntMap was successful in quantitatively 
evaluating continuous changes in local bulk compositions and 
textures at a millimeter scale that tends to be overlooked in bulk-
rock chemistries of hand-specimen samples. The present results 
suggest that the layering structure in the Nové Dvory eclogite 
was produced by intrusion of a pyroxenitic melt into a subducted 
gabbroic rock at high-pressure conditions. The preservation of 
millimeter-scale inhomogeneities in the Nové Dvory eclogite 
implies the duration of high-temperature conditions (>1000 °C 
in peak) was sufficiently short to avoid complete homogeniza-
tion by volume diffusion. This confirms rapid exhumation of the 
eclogite (Nakamura et al. 2004) and its host peridotite (Medaris 
et al. 1990) as inferred from garnet zoning patterns, and it further 
implies the presence of a low-viscosity pyroxenitic melt that may 
have aided in the rapid exhumation of the metamorphic rocks. The 
formation process of millimeter-scale inhomogeneities may record 
a key event in petrogenesis and can be retrieved by combining 
millimeter-scale local bulk chemistry with textural information 
based on quantitative EPMA mapping.
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