An experimental approach to quantify the effect of tetrahedral boron in tourmaline on the boron isotope fractionation between tourmaline and fluid

MARTIN KUTZSCHBACH^{1,*}, BERND WUNDER², ROBERT B. TRUMBULL², ALEXANDER ROCHOLL², ANETTE MEIXNER³, AND WILHELM HEINRICH²

¹Fachgebiet Mineralogie-Petrologie, Technische Universität Berlin, 13355 Berlin, Germany ²GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany ³Faculty of Geosciences & MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany

ABSTRACT

This study investigates the effect of tetrahedral B (^[4]B) in synthetic tourmaline on the B-isotope fractionation between tourmaline and fluid. This is important for the correct interpretation of B-isotope variations in natural tourmalines containing "excess" B (greater than three atoms per formula unit), which substitutes for Si at tetrahedral sites. Such tourmalines commonly occur in Li, Al-rich pegmatites and have been reported from glaucophane schists that formed at high pressures during subduction.

Tournaline synthesis experiments were performed in a piston-cylinder apparatus in the system SiO₂-Al₂O₃-B₂O₃-NaCl-H₂O at 4 GPa and 700 °C using different run durations, starting from quartz- γ -Al₂O₃-H₃BO₃ solid mixtures and NaCl-solutions. We were able to produce "olenitic" tournaline with excess B between 1.2 and 2.5 ^[4]B per formula unit. The B-isotope compositions of the olenitic tourmaline and coexisting fluids were determined by secondary ion mass spectrometry and multi-collector plasma source mass spectrometry to derive isotope fractionation coefficients. The results indicate that for every 10 mol% of total B in tournaline in tetrahedral coordination, the value of $\Delta^{11}B_{tur-fluid}$ is shifted to more negative values by about 1‰ at 700 °C. This is in good agreement with published ab initio calculations and corresponds to an intracrystalline fractionation of B-isotopes between the trigonal B and tetrahedral T sites of tournaline on the order of 8 ± 5‰, whereby ¹⁰B partitions to the T site.

Keywords: SIMS, experimental geochemistry, fluid, matrix effect, mass spectrometry