Empirical electronic polarizabilities of ions for the prediction and interpretation of refractive indices: Oxides and oxysalts

ROBERT D. SHANNON¹ AND REINHARD X. FISCHER^{2,*}

¹Geological Sciences/CIRES, University of Colorado, Boulder, Colorado 80309, U.S.A.

²Universität Bremen, FB 5 Geowissenschaften, Klagenfurter Strasse, and MAPEX Center for Materials and Processes, D-28359 Bremen, Germany

ABSTRACT

An extensive set of refractive indices determined at $\lambda = 589.3$ nm (n_D) from ~2600 measurements on 1200 minerals, 675 synthetic compounds, ~200 F-containing compounds, 65 Cl-containing compounds, 500 non-hydrogen-bonded hydroxyl-containing compounds, and ~175 moderately strong hydrogen-bonded hydroxyl-containing compounds and 35 minerals with very strong H-bonded hydroxides was used to obtain mean total polarizabilities. These data, using the Anderson-Eggleton relationship

$$\alpha_{T} = \frac{(n_{D}^{2} - 1)V_{m}}{4\pi + \left(\frac{4\pi}{3} - c\right)(n_{D}^{2} - 1)}$$

where α_T = the total polarizability of a mineral or compound, n_D = the refractive index at λ = 589.3 nm, V_m = molar volume in $Å^3$, and c = 2.26, in conjunction with the polarizability additivity rule and a least-squares procedure, were used to obtain 270 electronic polarizabilities for 76 cations in various coordinations, H₂O, $5 \text{ H}_{x}\text{O}_{y}$ species $[(H_{3}\text{O})^{+}, (H_{3}\text{O}_{2})^{-}, (H_{4}\text{O}_{4})^{-}, (H_{7}\text{O}_{4})^{-}], \text{NH}_{4}^{+}, \text{ and } 4 \text{ anions } (F^{-}, CI^{-}, OH^{-}, O^{2^{-}}).$

Anion polarizabilities are a function of anion volume, V_{an} , according to $\alpha_{-} = \alpha_{-}^{0} \cdot 10^{-N_0 V_{an}^{1.0}}$ where $\alpha_{-} =$ anion polarizability, α_{-}^{o} = free-ion polarizability, and V_{an} = anion molar volume. Cation polarizabilities depend on cation coordination according to a light-scattering (LS) model with the polarizability given by $\alpha_{(CN)} = (a_1 + a_2 CNe^{-a_3 CN})^{-1}$ where CN = number of nearest neighbor ions (cation-anion interactions), and a_1, a_2 , and a_3 are refinable parameters. This expression allowed fitting polarizability values for Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Mn²⁺, Fe²⁺, Y³⁺, (Lu³⁺-La³⁺), Zr⁴⁺, and Th⁴⁺. Compounds with: (1) structures containing lone-pair and uranyl ions; (2) sterically strained (SS) structures [e.g., $Na_{4,4}Ca_{3,8}Si_6O_{18}$ (combetie), $\Delta = 6\%$ and Ca₃Mg₂Si₂O₈ (merwinite), $\Delta = 4\%$]; (3) corner-shared octahedral (CSO) network and chain structures such as perovskites, tungsten bronzes, and titanite-related structures [e.g., MTiO₃ (M = Ca, Sr, Ba), $\Delta = 9-12\%$ and KNbO₃, $\Delta = 10\%$]; (4) edge-shared Fe³⁺ and Mn³⁺ structures (ESO) such as goethite (FeOOH, $\Delta = 6\%$); and (5) compounds exhibiting fast-ion conductivity, showed systematic deviations between observed and calculated polarizabilities and thus were excluded from the regression analysis. The refinement for ~2600 polarizability values using 76 cation polarizabilities with values for Li⁺ $\rightarrow Cs^{+}, Ag^{+}, Be^{2+} \rightarrow Ba^{2+}, Mn^{2+/3+}, Fe^{2+/3+}, Co^{2+}, Cu^{+/2+}, Zn^{2+}, B^{3+} \rightarrow In^{3+}, Fe^{3+}, Cr^{3+}, Sc^{3+}, Y^{3+}, Lu^{3+} \rightarrow La^{3+}, Cr^{3+}, Sc^{3+}, Y^{3+}, Lu^{3+} \rightarrow La^{3+}, Cr^{3+}, Sc^{3+}, S$ $C^{4+} \rightarrow Sn^{4+}$, $Ti^{3+/4+}$, Zr^{4+} , Hf^{4+} , Th^{4+} , V^{5+} , Mo^{6+} , and W^{6+} in varying CN's, yields a standard deviation of the least-squares fit of 0.27 (corresponding to an R^2 value of 0.9997) and no discrepancies between observed and calculated polarizabilities, $\Delta > 3\%$.

Using

$$n_{\rm D} = \sqrt{\frac{4\pi\alpha}{\left(2.26 - \frac{4\pi}{3}\right)\alpha + V_m} + 1}$$

the mean refractive index can be calculated from the chemical composition and the polarizabilities of ions determined here. The calculated mean values of $\langle n_{\rm D} \rangle$ for 54 common minerals and 650 minerals and synthetic compounds differ by <2% from the observed values.

In a comparison of polarizability analysis with 68 Gladstone-Dale compatibility index (CI) (Mandarino 1979, 1981) values rated as fair or poor, we find agreement in 32 instances. However, the remaining 36 examples show polarizability Δ values <3%. Thus, polarizability analysis may be a more reliable measure of the compatibility of a mineral's refractive index, composition, and crystal structure.

Keywords: Electronic polarizabilities, refractive indices, Gladstone-Dale relationship, Anderson-Eggleton relationship, Lorenz-Lorentz relationship, Drude relationship, optical properties

0003-004X/16/0010-2288\$05.00/DOI: http://dx.doi.org/10.2138/am-2016-5730

^{*} E-mail: rfischer@uni-bremen.de