SPECIAL COLLECTION: BUILDING PLANETS: THE DYNAMICS AND GEOCHEMISTRY OF CORE FORMATION

The W-WO₂ oxygen fugacity buffer (WWO) at high pressure and temperature: Implications for f_{O2} buffering and metal-silicate partitioning

GREGORY A. SHOFNER^{1,*}, ANDREW J. CAMPBELL², LISA R. DANIELSON³, KEVIN RIGHTER⁴, REBECCA A. FISCHER², YANBIN WANG⁵, AND VITALI PRAKAPENKA⁵

¹Department of Physics, Astronomy, and Geosciences, Towson University, 8000 York Road, Towson, Maryland 21252, U.S.A.

²Department of the Geophysical Sciences, The University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637, U.S.A.

³Jacobs Technology, NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77058, U.S.A.

⁴NASA Johnson Space Center, 2101 NASA Parkway, Mailcode XI2, Houston, Texas 77058, U.S.A.

⁵Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory, 9700 South Cass Avenue, Building 434A, Argonne, Illinois 60439, U.S.A.

ABSTRACT

Synchrotron X-ray diffraction data were obtained to simultaneously measure unit-cell volumes of W and WO₂ at pressures and temperatures up to 70 GPa and 2300 K. Both W and WO₂ unit-cell volume data were fit to Mie-Grüneisen equations of state; parameters for W are $K_T = 307 (\pm 0.4)$ GPa, $K'_{\rm T} = 4.05 \ (\pm 0.04), \ \gamma_0 = 1.61 \ (\pm 0.03), \ \text{and} \ q = 1.54 \ (\pm 0.13).$ Three phases were observed in WO₂ with structures in the $P2_1/c$, Pnma, and C2/c space groups. The transition pressures are 4 and 32 GPa for the $P2_1/c$ -Pnma and Pnma-C2/c phase changes, respectively. The $P2_1/c$ and Pnma phases have previously been described, whereas the C2/c phase is newly described here. Equations of state were fitted for these phases over their respective pressure ranges yielding the parameters $K_T = 238 (\pm 7), 230 (\pm 5), 304 (\pm 3)$ GPa, $K_T = 4$ (fixed), 4 (fixed), 4 (fixed) GPa, $\gamma_0 = 1.45 (\pm 0.18), 1.22 (\pm 0.07), 1.21 (\pm 0.12), and q = 1$ (fixed), 2.90 (\pm 1.5), 1 (fixed) for the P2₁/c, Pnma, and C2/c phases, respectively. The W-WO₂ buffer (WWO) was extended to high pressure using these W and WO₂ equations of state. The T- f_{O_2} slope of the WWO buffer along isobars is positive from 1000 to 2500 K with increasing pressure up to at least 60 GPa. The WWO buffer is at a higher f_{02} than the iron-wüstite (IW) buffer at pressures lower than 40 GPa, and the magnitude of this difference decreases at higher pressures. This implies an increasingly lithophile character for W at higher pressures. The WWO buffer was quantitatively applied to W metal-silicate partitioning by using the WWO-IW buffer difference in combination with literature data on W metal-silicate partitioning to model the exchange coefficient ($K_{\rm D}$) for the Fe-W exchange reaction. This approach captures the non-linear pressure dependence of W metal-silicate partitioning using the WWO-IW buffer difference. Calculation of $K_{\rm D}$ along a peridotite liquidus predicts a decrease in W siderophility at higher pressures that supports the qualitative behavior predicted by the WWO-IW buffer difference, and agrees with findings of others. Comparing the competing effects of temperature and pressure the results here indicate that pressure exerts a greater effect on W metal-silicate partitioning.

Keywords: High pressure, tungsten, oxygen fugacity buffer, equation of state, metal-silicate partitioning