Phase stabilities and spin transitions of Fe₃(S_{1-x}P_x) at high pressure and its implications in meteorites

TINGTING GU^{1,2,*}, YINGWEI FEI^{1,2}, XIANG WU¹, AND SHAN QIN¹

¹Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, Peking University & School of Earth and Space Sciences, Peking University, Beijing 100871, China

²Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C., 20015, U.S.A

ABSTRACT

Fe-S-P compounds have been observed in many meteorites and could be the important components in planetary cores. Here we investigated the phase stability of $Fe_3(S,P)$ solid solutions and synthesized high-quality $Fe_3(S_{1-x}P_x)$ high-pressure phases in the multi-anvil press. The physical properties of $Fe_3(S_{0.5}P_{0.5})$ were further studied in the diamond-anvil cell by synchrotron X-ray diffraction and emission spectroscopy. The solubility of S in the $Fe_3(S,P)$ solid solution increases with increasing pressure. The minimum pressure to synthesize the pure Fe_3S and $Fe_3(S_{0.13}P_{0.87})$ is about 21 and 8 GPa, respectively. The observed discontinuity in unit-cell parameters at about 18 GPa is caused by the high-spin to lowspin transition of iron, supported by X-ray emission spectroscopy data. The sulfur solubility in $Fe_3(S,P)$ solid solutions could be an excellent pressure indicator if such solid solutions are found in nature.

Keywords: Iron sulfides, iron phosphides, high pressure, meteorites, spin transition