High-pressure synthesis of skiagite-majorite garnet and investigation of its crystal structure

LEYLA ISMAILOVA^{1,2,*}, ANDREY BOBROV³, MAXIM BYKOV¹, ELENA BYKOVA^{1,2}, VALERIO CERANTOLA², INNOKENTY KANTOR⁴, ILYA KUPENKO⁴, CATHERINE MCCAMMON², VADIM DYADKIN⁴, DMITRY CHERNYSHOV⁴, SAKURA PASCARELLI⁴, ALEXSANDR CHUMAKOV⁴, NATALIA DUBROVINSKAIA¹ AND LEONID DUBROVINSKY²

¹Laboratory of Crystallography, Universität Bayreuth, 95447 Bayreuth, Germany
²Bayerisches Geoinstitut, Universität Bayreuth, 95447 Bayreuth, Germany
³Department of Petrology, Geological Faculty, Moscow State University, 119234 Moscow, Russia
⁴ESRF, European Synchrotron Radiation Facility, CS40220 38043 Grenoble Cedex 9, France

ABSTRACT

Skiagite-rich garnet was synthesized as single crystals at 9.5 GPa and 1100 °C using a multi-anvil apparatus. The crystal structure [cubic, space group $Ia\overline{3}d$, a = 11.7511(2) Å, V = 1622.69(5) Å³, $D_{cale} = 4.4931$ g/cm³] was investigated using single-crystal synchrotron X-ray diffraction. Synchrotron Mössbauer source spectroscopy revealed that Fe²⁺ and Fe³⁺ predominantly occupy dodecahedral (X) and octahedral (Y) sites, respectively, as expected for the garnet structure, and confirmed independently using nuclear forward scattering. Single-crystal X-ray diffraction suggests the structural formula of the skiagite-rich garnet to be Fe³⁺₂(Fe²⁺_{1.532(1)}Fe³⁺_{1.532(1)}Si⁴⁺_{2.534(2)})(SiO₄)₃, in agreement with electron microprobe chemical analysis. The formula is consistent with X-ray absorption near-edge structure spectra. The occurrence of Si and Fe²⁺ in the octahedral Y-site indicates the synthesized garnet to be a solid solution of end-member skiagite with ~23 mol% of the Fe-majorite end-member Fe³⁺₃(Fe²⁺Si⁴⁺)(SiO₄)₃.

Keywords: Skiagite, majorite, garnets, single-crystal X-ray diffraction, Mössbauer spectroscopy, nuclear forward scattering, XANES