LETTER

Decagonite, Al₇₁Ni₂₄Fe₅, a quasicrystal with decagonal symmetry from the Khatyrka CV3 carbonaceous chondrite

LUCA BINDI^{1,*}, NAN YAO², CHANEY LIN³, LINCOLN S. HOLLISTER⁴, CHRISTOPHER L. ANDRONICOS⁵, VADIM V. DISTLER⁶, MICHAEL P. EDDY⁷, ALEXANDER KOSTIN⁸, VALERY KRYACHKO⁶, GLENN J. MACPHERSON⁹, WILLIAM M. STEINHARDT¹⁰, MARINA YUDOVSKAYA⁶ AND PAUL J. STEINHARDT^{3,11}

¹Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, I-50121 Florence, Italy

²Princeton Institute for the Science and Technology of Materials, Bowen Hall, Princeton University, Princeton, New Jersey 08544, U.S.A.

³Department of Physics, Princeton University, Jadwin Hall, Princeton, New Jersey 08544, U.S.A.

⁴Department of Geosciences, Princeton University, Guyot Hall, Princeton, New Jersey 08544, U.S.A.

⁵Division of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907, U.S.A.

⁶Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences, Staromonetny per. 35, Moscow, 119017, Russia

⁷Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A. ⁸Geoscience Technology, BHP Billiton, Houston, Texas 77056, U.S.A.

⁹Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. ¹⁰Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, U.S.A.

¹¹Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544 U.S.A.

ABSTRACT

Decagonite is the second natural quasicrystal, after icosahedrite ($Al_{63}Cu_{24}Fe_{13}$), and the first to exhibit the crystallographically forbidden decagonal symmetry. It was found as rare fragments up to $\sim 60 \,\mu\text{m}$ across in one of the grains (labeled number 126) of the Khatyrka meteorite, a CV3 carbonaceous chondrite. The meteoritic grain contains evidence of a heterogeneous distribution of pressures and temperatures that occurred during impact shock, in which some portions of the meteorite reached at least 5 GPa and 1200 °C. Decagonite is associated with Al-bearing trevorite, diopside, forsterite, ahrensite, clinoenstatite, nepheline, coesite, pentlandite, Cu-bearing troilite, icosahedrite, khatvrkite, taenite, Al-bearing taenite, and steinhardtite. Given the exceedingly small size of decagonite, it was not possible to determine most of the physical properties for the mineral. A mean of seven electron microprobe analyses (obtained from three different fragments) gave the formula Al_{70,2(3)}Ni_{24,5(4)}Fe_{5,3(2)}, on the basis of 100 atoms. A combined TEM and single-crystal X-ray diffraction study revealed the unmistakable signature of a decagonal quasicrystal: a pattern of sharp peaks arranged in straight lines with 10-fold symmetry together with periodic patterns taken perpendicular to the 10-fold direction. For quasicrystals, by definition, the structure is not reducible to a single three-dimensional unit cell, so neither cell parameters nor Z can be given. The likely space group is $P10_s/mmc$, as is the case for synthetic Al₁₁Ni₂₄Fe₅. The five strongest powder-diffraction lines $[d \text{ in } \text{\AA} (I/I_0)]$ are: 2.024 (100), 3.765 (50), 2.051 (45), 3.405 (40), 1.9799 (40). The new mineral has been approved by the IMA-NMNC Commission (IMA2015-017) and named decagonite for the 10-fold symmetry of its structure. The finding of a second natural quasicrystal informs the longstanding debate about the stability and robustness of quasicrystals among condensed matter physicists and demonstrates that mineralogy can continue to surprise us and have a strong impact on other disciplines.

Keywords: Quasicrystal, aluminum, meteorite, chemical composition, TEM, X-ray diffraction, new mineral, decagonite