Pauloabibite, trigonal NaNbO₃, isostructural with ilmenite, from the Jacupiranga carbonatite, Cajati, São Paulo, Brazil

LUIZ A.D. MENEZES FILHO^{1,†}, DANIEL ATENCIO^{2,*}, MARCELO B. ANDRADE³, ROBERT T. DOWNS⁴, MÁRIO L.S.C. CHAVES¹, ANTÔNIO W. ROMANO¹, RICARDO SCHOLZ⁵ AND ABA I.C. PERSIANO⁶

¹Instituto de Geociências, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil ²Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, 05508-080, São Paulo, São Paulo, Brazil ³Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, São Paulo, Brazil ⁴Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A. ⁵Departamento de Geologia da Escola de Minas da Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000,

Minas Gerais, Brazil

⁶Departamento de Física do Instituto de Ciências Exatas da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31279-901, Belo Horizonte, Minas Gerais, Brazil

ABSTRACT

Pauloabibite (IMA 2012-090), trigonal NaNbO₃, occurs in the Jacupiranga carbonatite, in Cajati County, São Paulo State, Brazil, associated with dolomite, calcite, magnetite, phlogopite, pyrite, pyrrhotite, ancylite-(Ce), tochilinite, fluorapatite, "pyrochlore", vigezzite, and strontianite. Pauloabibite occurs as encrustations of platy crystals, up to 2 mm in size, partially intergrown with an unidentified Ca-Nb-oxide, embedded in dolomite crystals, which in this zone of the mine can reach centimeter sizes. Cleavage is perfect on {001}. Pauloabibite is transparent and displays a sub-adamantine luster; it is pinkish brown and the streak is white. The calculated density is 4.246 g/cm³. The mineral is uniaxial; $n(\text{mean})_{\text{calc}}$ is 2.078. Chemical composition (n = 17, WDS, wt%) is: Na₂O 16.36, MgO 0.04, CaO 1.36, MnO 0.82, FeO 0.11, SrO 0.02, BaO 0.16, SiO₂ 0.03, TiO₂ 0.86, Nb₂O₅ 78.66, Ta₂O₅ 0.34, total 98.76. The empirical formula is $(Na_{0.88}Ca_{0.04}Mn_{0.02}^{2+})_{\Sigma_{0.94}}(Nb_{0.98}Ti_{0.02})_{\Sigma_{1.00}}O_3$. X-ray powder-diffraction lines (calculated pattern) [d in Å(I)(hkl)] are: 5.2066(100)(003), 4.4257(82)(101), 3.9730(45)(012), 2.9809(54) (104), 2.3718(88)(2T3), 1.9865(28)(024), 1.8620(53)(2T6), and 1.5383(30)(300). It is trigonal, space group: $R\overline{3}$, a = 5.3287(5), c = 15.6197(17) Å, V = 384.10(7) Å³, Z = 6. The crystal structure was solved $(R_1 = 0.0285, wR_2 = 0.0636$ for 309 observed reflections). Pauloabibite is isostructural with ilmenite and is polymorphic with isolueshite (cubic) and lueshite (orthorhombic). The name is in honor of Paulo Abib Andery (1922-1976).

Keywords: Pauloabibite, new mineral, carbonatite, ilmenite structure, crystal structure, chemical composition, Jacupiranga mine, Cajati, Brazil