American Mineralogist, Volume 100, pages 26-34, 2015

CROSSROADS IN EARTH AND PLANETARY MATERIALS

Microelectronic junctions in arsenian pyrite due to impurity and mixed sulfide heterogeneity

JAMIE S. LAIRD^{1,2,3,*}, COLIN M. MACRAE¹, ANGELA HALFPENNY⁴, ROSS LARGE² AND CHRIS G. RYAN^{1,2,3}

¹CSIRO, Mineral Resources National Research Flagship, Normanby Road, Clayton, Victoria 3168, Australia
²Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart 7001, Australia
³School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
⁴Electron Microscopy Facility, Department of Imaging and Applied Physics, Curtin University, Perth, Western Australia 6845, Australia
⁵CSIRO, Processing Science and Engineering, Normanby Road, Clayton, Victoria 3168, Australia

ABSTRACT

Impurities and crystal defects within the semiconducting bulk of a metal sulfide introduce energy levels within the forbidden bandgap. These levels in turn control semiconducting type and local electrical properties within single and multi-phased sulfide assemblages. Heterogeneity in sulfide semiconductivity linked to these impurities can lead to *p-n* micro-junction formation and potential distributions near the surface that may alter redox reactivity. Secondary gold ore genesis via a micro-galvanic effect related to heterogeneity has in the past been hypothetically linked to such micro-junctions. Understanding these regions and their interaction with weathering fluids in the regolith for example requires large-scale imaging of potential distributions. Here we investigate the existence of micro-electronic junctions in a mixed sulfide assemblage using scanning laser beam induced current (LBIC) and correlate them with pyrite-chalcopyrite interfaces mapped using combined energy-dispersive spectroscopy (EDS) and wavelength-dispersive spectroscopy (WDS) on an electron hyper-probe. Junctions in a natural assemblage are positively identified for the first time.

Keywords: Pyrite, heterogeneity, semiconductors, electrical properties, micro-junction, heterojunction, chalcopyrite, mixed sulfides, laser beam induced current, elemental mapping, metal ore genesis, electrochemical