Thermal expansion of MgSiO₃ and FeSiO₃ ortho- and clinopyroxenes

DEMELZA HUGH-JONES

Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.

Abstract

Unit-cell parameters of synthetic (Mg,Fe)SiO₃ ortho- and clinopyroxenes were determined at regular intervals in the temperature range 293–1094 K using powder X-ray diffraction techniques. Volume thermal expansion coefficients calculated from these data show that orthopyroxenes expand faster than clinopyroxenes (i.e., $\alpha_{opx} > \alpha_{cpx}$), irrespective of their composition along the MgSiO₃-FeSiO₃ join. For both ortho- and clinopyroxenes, α_{MgSiO_3} exceeds α_{FeSiO_3} . Axial thermal expansion coefficients calculated for each of the pyroxene phases studied here are a complex function of the changes in structure at high temperature. Thermodynamic calculations of the position of the phase boundary between MgSiO₃ ortho- and clinopyroxene show excellent agreement with the experimentally reversed boundary.