American Mineralogist, Volume 82, pages 460-466, 1997

High-pressure behavior of kyanite: Decomposition of kyanite into stishovite and corundum

MAX W. SCHMIDT,¹ STEFANO POLI,² PAOLA COMODI,³ AND PIER FRANCESCO ZANAZZI³

 ¹CNRS-URA 10, Magmas et Volcans, 5 rue Kessler, 63038 Clermont-Ferrand, France also at: Bayerisches Geoinstitut, 95440 Bayreuth, Germany
²Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, 20133 Milano, Italy
³Dipartimento di Scienze della Terra, Università di Perugia, Piazza Università, 06100 Perugia, Italy

ABSTRACT

The pressure stability of kyanite was experimentally reversed with the use of a multianvil apparatus. Kyanite was found to decompose into its oxides stishovite and corundum between 14 \pm 0.5 GPa (at 1000 °C) and 17.5 \pm 1.0 GPa (at 2000 °C).

Reliable thermodynamic calculations can be performed to temperatures of approximately 1500 °C. Up to this temperature, the location of the equilibrium kyanite = corundum + stishovite, determined in this study, constrains the equilibrium coesite = stishovite. A set of thermodynamic data was calculated by linear programming from the kyanite breakdown reaction and the coesite = stishovite equilibrium. Feasible values for the fitted thermodynamic properties are -28.5 to -26.3 MPa/K for the temperature derivative of the bulk modulus $[(dK/dT)_P]$ of kyanite, -815254 to -813635 J/mol for $G_{(1298)}^0$ of stishovite, and 24.6 to 26.3 J/mol \cdot K for $S_{(1298)}^0$ of stishovite.

The experimental results indicate (1) that in peraluminous eclogites of basaltic or sedimentary origin, stishovite may coexist stably with corundum at a depth greater than 420– 450 km and (2) that in an inhomogeneous Al-enriched mantle, corundum could be a minor constituent in the lower mantle.