American Mineralogist, Volume 82, pages 546–548, 1997

Thermochemistry of double carbonates in the K₂CO₃-CaCO₃ system

ALEXANDRA NAVROTSKY,¹ ROBERT L. PUTNAM,¹ CAMILLA WINBO,² AND ERIK ROSÉN²

¹Department of Geosciences and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544-1003, U.S.A. ²Department of Inorganic Chemistry, Umeå University, S-90187 Umeå, Sweden

ABSTRACT

Enthalpies of formation, ΔH_i , of the double carbonates $K_2Ca(CO_3)_2$ (with two polymorphs, bütschlite and fairchildite) and $K_2Ca_2(CO_3)_3$ from the components K_2CO_3 and CaCO₃ were determined at 298 K by drop solution calorimetry in molten 2PbO·B₂O₃ at 974 K. The enthalpies of formation were -38.7 ± 3.2 kJ/mol for bütschlite, -5.1 ± 3.3 kJ/mol for fairchildite and -7.2 ± 5.8 kJ/mol for $K_2Ca_2(CO_3)_3$. The entropy changes for the formation, ΔS_f , were also evaluated for the double carbonates. Assuming ΔS_f (bütschlite) = 0, because of its ordered structure, the entropy of formation of fairchildite is 40.9 ± 5.1 J/mol·K and of $K_2Ca_2(CO_3)_3$ is 39.4 ± 7.3 J/mol·K.