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ABSTRACT

The cluster variation method (CVM) for determining the thermodynamics of both short-
range and long-range order in this study was extended to complex aluminosilicate minerals.
Using recently developed algorithms for the maximization of cluster entropies, it is possible
to construct high-order cluster variation approximations for Ising lattices of complex to-
pology. This study gives the essentials of developing CVM models for the Al, Si nets of
nepheline, leucite, feldspar, and cordierite. The robustness of the method is demonstrated
by its ability to reproduce quantitatively recently published results of Monte Carlo simu-
lations of Al, Si ordering in the Ising model with feldspar topology. The future prospects
for the application of CVM to aluminosilicates are discussed.

INTRODUCTION

Many aluminosilicates exhibit Al, Si ordering that in
many cases is observed macroscopically as regular alter-
nation of average occupancies of the tetrahedral sites and
subsequently as changes of lattice geometry. These mac-
roscopically observed effects are known as long-range
ordering (LRO). However, the phenomenon of ordering
is more complex than can be inferred from X-ray dif-
fraction and other methods sensitive to changes of the
average structure. Recent investigations of aluminosili-
cates using 29Si NMR spectroscopy have provided an in-
sight into local properties of the Al, Si distributions. For
example, the 29Si NMR studies of synthetic cordierites
and anorthites (Putnis et al. 1985, 1987; Phillips et al.
1992) have shown that significant variations in Al, Si dis-
tribution can occur even when the degree of LRO remains
fixed. These variations are seen primarily as changes in
the proportion of Al-O-Al, Si-O-Si, and Al-O-Si linkages
in aluminosilicates, the phenomenon known as short-
range ordering (SRO).

The equilibrium thermodynamic effects of Al, Si order-
disorder in albite and plagioclase feldspars have been de-
scribed using Landau models (Salje et al. 1985; Carpenter
1992; Holland and Powell 1992) in which variations in
the thermodynamic properties of a mineral are related to
a change in a macroscopic LRO parameter (Qod). How-
ever, certain important characteristics of Al, Si order/dis-
order are beyond the scope of such an approach. In gen-
eral, aluminosilicates can exhibit various degrees of SRO
and LRO depending on composition and thermodynamic
history of the samples. When LRO cannot develop due
to compositional or kinetic constraints, the thermodynam-
ic properties of a mineral may change as function of the
degree of SRO. Therefore, interpretation of such experi-
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mental information requires modeling of Al, Si distribu-
tions as functions of the two order parameters.

When we introduce SRO into consideration, we must
change our thermodynamic methodology from Landau
models to Ising models. The main assumption of the Ising
model is that the system of interacting particles adjust to
an ordering force by changing its LRO and SRO param-
eters together. In the present study, we will assume that
the ordering force is related to the energy difference (J1)
between the nearest-neighbor Al-O-Al, Si-O-Si, and Si-
O-Al pairs:

J1 5 VAlAl 1 VSiSi 2 2VSiAl (1)

As discussed recently by Dove et al. (1996), J1 is the
most important factor in the stabilization of ordering in
aluminosilicates; however, a more correct analysis would
require introducing a set of ordering constants Jn (n 5 1,
2, 3. . .) for pairs of first, second, and third neighbors. We
will limit our analysis here to the assumption J1 5 J, Jn

5 0 (n $ 2).
The Al, Si distributions in various aluminosilicates

have been modeled using Monte Carlo (MC) methods
(Herrero 1991, 1993; Herrero and Sanz 1991; Thayapar-
am et al. 1994, 1996; Myers et al. 1998). However, the
MC method can describe only the equilibrium (Boltz-
mann) distribution in which the LRO and SRO parame-
ters have a certain functional relationship to each other
and to the temperature and J. To describe non-equilibrium
states of order, which are rather common in aluminosili-
cates, a method is needed that is capable of treating the
LRO and SRO parameters as independent variables. We
will consider an analytical approach to this problem based
on the cluster variation method (CVM).

In recent decades, the CVM has been widely used for
the description of atomic ordering in alloys (Inden and
Pitsch 1991; de Fontaine 1979, 1994, and references
therein). There have been relatively few studies applying
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the CVM to mineralogical problems. An excellent review
of these studies has been given by Ross (1991). More
recently, Herrero and Sanz (1991) proposed an elegant
method for the description of Al, Si ordering in layer
silicates. It was shown that using 29Si NMR data, one can
constrain the probability distribution (and entropy) of the
four-point ‘‘star’’ cluster in the tetrahedral Al, Si layer
and then use the ‘‘star’’ CVM approximation to work out
the entropy of Al, Si distribution in micas. Phillips and
Kirkpatrick (1994) used the same idea to calculate Al, Si
entropies in leucite and analcime from spectroscopic data.

Unfortunately, the ‘‘star’’ approximation gives reason-
able results only for aluminosilicates with rather low Al/
(Al1Si) ratios. In our recent study (Vinograd and Putnis
1998), we have shown that for aluminosilicates with high
Al/(Al1Si) ratios (e.g., anorthite, nepheline, margarite)
the low-order CVM approximations (such as the star and
pair) predict strongly negative entropies. Clearly, there is
a need for the development of higher-order CVM ap-
proximations, i.e., those based on larger clusters. How-
ever, in the development of such approximations, certain
technical problems arise.

The main problem is that one must evaluate the prob-
ability distribution (PD) of all possible configurations
within the clusters and for large clusters this evaluation
requires introduction of many configuration variables.
This in turn causes mathematical and computational com-
plexity. Computational difficulty has been the principal
factor limiting the development of CVM in mineralogy.
In fact, it has been widely assumed that there was no
future for CVM in describing SRO in a structure as com-
plex as a feldspar, even with the advent of increasing
computer power. This is based on the fact that the tradi-
tional CVM techniques, when applied to clusters large
enough to describe the feldspar structure adequately
would require the use of hundreds of configuration
variables.

In this paper, we demonstrate that using a new ap-
proach, this problem for Ising lattices disappears. The de-
velopment of new computer algorithms allows avoidance
of the use of variables corresponding to the high-order
correlations within the clusters while continuing to treat
these correlations correctly. The term ‘‘high-order’’ refers
here to all groups of atoms that include pairs of second-
and higher-order neighbors. The aim of the present paper
is to show that by using these algorithms, it is possible
to construct reasonably accurate CVM models for com-
plex aluminosilicate lattices while avoiding most of the
computational difficulties.

There is very little information published in the min-
eralogical literature on the details of the CVM approach,
and because we demonstrate its wider applicability to alu-
minosilicate minerals in this paper, it is relevant to de-
scribe its main features first. Our aim is to describe the
essential features of CVM pictorially, in a way that can
be related relatively easily to aluminosilicate structures,
and to describe the meaning of the algorithms referred to
above in a similar way. We then apply this approach to

show how the configurational entropy associated with Al,
Si distributions in nepheline, leucite, plagioclase feldspars
and cordierite can be determined. In the case of feldspars,
we have the opportunity of demonstrating the virtually
exact correspondence between the entropy determined by
the MC method (Myers et al. 1998) and CVM.

THE ISING MODEL

The Ising model (Ising 1925; Onsager 1944) was in-
troduced to describe magnetic ordering in solids and
chemical ordering in alloys. According to this model a
lattice of fixed topology is occupied by particles of two
different types, A and B (which can be atoms with dif-
ferently oriented spins or different atoms, or groups of
atoms, such as AlO4 and SiO4 tetrahedra). It is assumed
that nearest-neighbor particles interact with the following
energies:

VAA 5 VBB 5 VAB 5 VBA 5 2V (2)

The negative sign of V corresponds to the tendency of
the system to arrange spins in one particular direction
(ferromagnetic ordering), whereas the positive sign favors
their anti-parallel alternative arrangement (anti-ferromag-
netic ordering). In cation ordering terminology, these ten-
dencies correspond to phase separation or superlattice for-
mation, respectively. We are interested in the case of
positive V and positive J (J 5 4V) because it allows us
to describe the tendency to produce SRO by the avoid-
ance of Al-O-Al contacts that can develop into a super-
lattice with regularly alternating Al-rich and Si-rich sites
(LRO).

The equilibrium distribution in the Ising system is de-
termined by the minimum of the configurational free en-
ergy. The system tends to find a compromise between
energy and entropy factors. It tries to decrease the number
of unfavorable nearest-neighbor linkages (to change the
pair probability distribution) while keeping the entropy as
high as possible under the given constraint on the pair
distribution. Basically, when J . 0, there exists two strat-
egies to decrease the number of the energetically unfa-
vorable (AA) bonds. The first strategy is to increase the
degree of local correlation between lattice points (in-
crease SRO), whereas the second strategy is to develop
periodic oscillations of site occupancies throughout the
lattice (increase LRO). At high A/(A1B) ratios and at
low temperatures, the second strategy usually prevails,
whereas at low A/(A1B) ratios and high temperatures,
the first strategy is favored. In many Ising lattices, a crit-
ical temperature typically exists above which the periodic
oscillations of average site occupancies become unstable;
this is the temperature of order/disorder transition. The
critical temperature is a function of J, the A/(A1B) ratio,
and the lattice topology. LRO disappears abruptly above
the critical temperature, whereas the SRO generally per-
sists up to reasonably high temperatures and disappears
only in the limit of an infinitely high temperature.

These predictions of the Ising model are consistent
with the existence of strong short-range ordering in alu-
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TABLE 1. Probability distribution of the pair cluster constrained
by the parameters x 5 0.25, s 5 0.94, and Qod 5 0

IJ Pij

AA
AB
BA
BB

0.0025
0.2475
0.2475
0.5025

minosilicates synthesized at low temperatures and with
the existence of order/disorder transitions such as I1-C1
in anorthite-rich feldspars and Cccm-P6/mmc in cordier-
ite. The Ising model also explains the high degrees of
SRO in long-range disordered synthetic cordierites and
anorthites measured by 29Si NMR (Putnis et al. 1985,
1987; Phillips et al. 1992). The Ising model allows con-
sideration of all these experimental observations as direct
consequences of short-range interactions between Al and
Si. Different temperatures of order/disorder transitions in
different aluminosilicates can be attributed to different
topologies of their Al, Si nets and to different Al/(Al1Si)
ratios (Dove et al. 1996).

The CVM and other analytical methods allow investi-
gation of the Ising model not only at equilibrium but also
in the whole space of order and composition parameters.
Typically, one constructs a non-equilibrium configura-
tional free energy (F) of an AxB12x system as a certain
surface in the space of F, LRO, SRO, and x coordinates:

F/NJ 5 f 5 e 2 (kT/J)s (3)

where N is the number of atoms in the system, s 5 S/R,
and e 5 E/(NJ) are the functions of LRO, SRO, and x
parameters. S and E are the non-equilibrium configura-
tional entropy and energy respectively. The equilibrium
properties of the system are calculated by minimizing f
with respect to LRO and SRO parameters at given values
of x and kT/J.

Below we treat the configurational energy and entropy
terms separately.

CONFIGURATIONAL ENERGY AND PAIR

PROBABILITY DISTRIBUTION

The configurational energy in the nearest-neighbor Is-
ing model can be exactly written as a function of the
interaction energies Vij and probabilities of the nearest-
neighbor pairs, Pij:

E5 (Z/2)N P V (4)O i j i j
i, j

where Z is the coordination number. Equation 4 can be
applied to lattices in which the probability distribution of
all the nearest-neighbor pairs is the same, and all lattice
points have the same coordination number. In cases where
there is more than one type of nearest-neighbor bond
(e.g., T1T2 and T2T2 pairs in cordierite), Equation 4 splits
accordingly into a number of terms where each term cor-
responds to a certain bond type.

In the general case, the pair distribution is a function
of the distribution of its two point clusters and of the SRO
parameter, which describes the strength of the statistical
correlation between occupancies of the two points. When
LRO is absent, the points have the same distribution and
describing the point distribution (PA 5 x, PB 5 1 2 x)
requires only the composition parameter x. In the case of
LRO the two point distributions are different and define
two sublattices, a and b. The difference between the av-

erage occupancies of a and b points can be described by
the LRO parameter Qod:

PAa 5 x(1 1 Qod), PAb 5 x(1 2 Qod) (5)

When the occupancies of nearest sites are uncorrelated,
the pair distribution can be found as a product of the two
point probabilities (e.g., PAaAb 5 PAaPAb, where PAaAb is
the probability of AA pair). In the case of extreme SRO
(we are interested in the case where 0 , x , 0.5), the
probability of AA pairs is zero (PAaAb 5 0). To describe
the intermediate case, we introduce the SRO parameter s
(0 , s , 1). Thus, the distribution of the ordered pair is
a function of the three parameters x, s, and Qod as follows:

P 5 (1 2 s)P P ,AaAb Aa Ab

P 5 P 2 P ,BaAb Ab AaAb

P 5 P 2 P ,AaBb Aa AaAb

P 5 P 2 P . (6)BaBb Ba BaAb

An example of the pair distribution constrained by the
parameters x 5 0.25, s 5 0.96, and Qod 5 0 is in Table
1. Basically, the SRO parameters (or correlation func-
tions) can be defined in a similar way for pairs of higher
order or groups of neighbors. We will avoid the intro-
duction of high order (multisite) correlation functions, be-
cause the probability distribution of any group of points
in the nearest-neighbor Ising model (when Jn 5 0, n $
2) in principle can be found as a function of x, s, and
Qod. However, it is important to keep in mind that the
distribution of high-order neighbors even in the nearest-
neighbor Ising model is non-random. Therefore, we will
use the general term ‘‘high-order correlations’’ to de-
scribe variables that could have been introduced to define
non-random high-order pair probabilities. Basically, when
we say ‘‘correlations,’’ we mean ‘‘non-random pair prob-
abilities’’ (Sanchez and de Fontaine 1978, for the formal
definition of the correlation functions).

CONFIGURATIONAL ENTROPY IN THE CLUSTER

VARIATION APPROXIMATION

The configurational entropy in the Ising model depends
on correlations between all atoms of the system and thus
is a complex function of the lattice topology. Fortunately,
the statistical correlation between a pair of neighbors van-
ishes rapidly with the increase of the length of the se-
quence of bonds separating them in a lattice (Meirovitch
1977). This gives the possibility of accurately describing
the entropy by considering probability distributions in
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FIGURE 1. The scheme of construction of a lattice from basic
clusters. Shaded areas correspond to subclusters of the basic clus-
ters, which are duplicated in the construction process.

reasonably small clusters. The CVM takes advantage of
this fact.

The CVM (Kikuchi 1951; Sanchez and de Fontaine
1978) allows one to write a series of approximations to
the entropy as functions of cluster probabilities. Kikuchi
and Brush (1967) have shown that the approximations
tend to converge to the correct result as the cluster size
increases. The entropy in a given approximation can be
expressed as follows:

S 5 kNs 5 2kN g(r) p(r,t)ln(r,t), (7)O O
r t

where p(r,t) is the probability of a certain (t) configura-
tion of the r-cluster, k is the Boltzmann constant, and N
is the total number of lattice points. The g(r) coefficients
account for the number of clusters and for the sign of
their contribution to the lattice entropy.

The clusters in the CVM are topologically distinct
groups of lattice points connected by lines that denote
correlations between the occupancies of the points. The
cluster entropy is a simple logarithmic function of the
cluster probability distribution (PD). The cluster PD is
composed of probabilities of all the possible cluster con-
figurations, where a configuration is defined by a set of
i, j, k, . . ., n indices, and each index accepts either an A
or a B state.

When constructing a CV approximation for a given
lattice, one faces two main questions. The first question
is what kinds of clusters are needed and how to calculate
the g(r) coefficients for them. The second is how to cal-
culate the probability distributions and entropies of the
chosen set of clusters. The answers to these questions
appear in the studies of Kikuchi (1951), Barker (1952),
Hijmans and de Boer (1955), Sanchez and de Fontaine
(1978), and Sanchez et al. (1984). These questions have
been discussed traditionally only in relation to highly
symmetric lattices, such as the simple cubic, fcc, and bcc,
which require the use of compact clusters (e.g., cubes,
tetrahedra, and octahedra). These methods become cum-
bersome for the less-symmetric lattices that appear in
aluminosilicates.

The most difficult problem concerns the evaluation of
cluster entropies. Sanchez and de Fontaine (1978) have
shown that the number of correlation functions needed to
describe a cluster PD is equal to the number of all distinct
subclusters into which the given cluster can be decom-
posed. This number increases exponentially with cluster
size, and for less-symmetric, clusters the increase is even
faster than for the symmetric ones. As we will show, the
description of aluminosilicate lattices typically requires
using large and non-symmetric clusters. For example, the
CVM model of the feldspar lattice must be based on clus-
ters containing up to 16 points. The traditional technique
would require using hundreds (maybe thousands) of con-
figuration variables and then to minimize the free energy
of the model with respect to these variables.

To limit the number of variables, we have developed
new algorithms for evaluating cluster entropies. Some

progress in this direction has already been reported by
Vinograd et al. (1997). Here, we will address the problem
of calculating cluster entropies in relation to the specific
cluster topologies relevant to aluminosilicates.

Another problem is that the methods for derivation of
the g(r) coefficients typically are described in the litera-
ture on the CVM in a formal way that requires counting
of all possible subclusters of the given basic cluster. This
is appropriate for clusters of high symmetry and small
size where the ennumeration of the subclusters is not very
difficult. In cases of large clusters of complex topology,
this procedure is cumbersome. In the present study, we
found it more convenient to use a less-formal geometrical
scheme for the derivation of CVM equations described
by de Fontaine (1979) and illustrated for the case of the
simple cubic lattice. We will show here that this scheme
can be adapted readily to various aluminosilicate lattices.

DECOMPOSITION OF THE TOTAL ENTROPY INTO

CLUSTER CONTRIBUTIONS

The idea underlying the decomposition of lattice entro-
py into cluster terms is that a typical configuration of A
and B particles in a lattice can be regarded as a complex
stochastic event (Alexandrowicz 1971). The probability
of this global event (Ptyp) can be approximated as a prod-
uct of probabilities of local events, where each event cor-
responds to an adsorption of a certain basic cluster to a
set of already adsorbed clusters (Fig. 1). The inverse to
the probability of the typical lattice configuration (W 5
1/Ptyp) is the number of accessible configurations, and the
entropy is given by k lnW. The problem basically consists
of calculating the total probability of a typical configu-
ration composed of an infinite set of overlapping cluster
configurations. Clearly, one can construct a continuous
lattice only from overlapping clusters. Therefore, each
event of adsorption must be accompanied by the events
of desorption or subtraction of certain duplicated ele-
ments (subclusters) of the basic clusters. The contribution
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FIGURE 2. The scheme of construction of a complex cluster
C from clusters A1 and A2, which have a common subcluster B.

TABLE 2. Short-hand notations for the combinatorial terms
and entropy formulas for different clusters

Cluster Combinatorial term Cluster entropy

point
N!

{ } 5•
(NP )!P i

i

k ln{ } 5 2R P ln P• O i i
i

pair
N!

{ – } 5• •
(NP )!P i j

i, j

k ln{ – } 5 2R P ln P• • O i j i j
i, j

square
N!–• •z z 5{ }–• • (NP )!P i jk l

i, j,k, l

–• •k ln z z 5 2R P ln PO{ } ijkl i jk l–• • i, j,k, l

FIGURE 3. The schemes of construction of chain fragments
from pair clusters and of polygons from the chain fragments. The
combinatorial terms correspond to the constructed clusters. The
denominators of the combinatorial terms correspond to the sub-
clusters, which have been duplicated in the construction process.
Dashed lines show the geometry of the parent cluster and indi-
cate that the specific combinatorial term corresponds to a sub-
cluster of the parent cluster.

of adsorption and desorption events to the total entropy
is of opposite sign.

To illustrate the last statement, we consider a case
where the total configuration (denoted as the supercluster
C) is composed of two (previously isolated) clusters A1
and A2 overlapping through their common subcluster B
(Fig. 2). The probability of an i1,i2,i3. . .in configuration of
the cluster C can be considered as a probability of a sto-
chastic event (C) composed of the events (A1) and (B2)
where B2 is a part of the cluster A2 that has no common
elements with B. Each of the events (A1) and (B2) cor-
responds to a certain subset of indexes i1,i2,i3. . .in. Bayes
formula for the probability of a complex event can be
written:

P(C) 5 P(A1)P(B2/A1) (8)

where P(B2/A1) is the probability of the event (B2) con-
ditional on the event (A1). Similarly, the event (A2) can
be considered as a combination of the events (B) and
(B2):

P(A2) 5 P(B)P(B2/B) (9)

where P(B2/B) is the probability of the event (B2) con-
ditional on the event (B). Because the clusters A1 and
A2 previously were isolated from each other, the event
(B2) does not depend directly on the event (A1) but de-
pends only on the event (B). Clearly, P(B2/A1) 5 P(B2/
B). Now, using Equation 9, Equation 8 can be rewritten
as follows:

P(C) 5 P(A1)P(A2)/P(B) (10)

Equation 10 relates the probability distribution of the
combination of clusters A1 and A2 to the product of their
probabilities and the probability of their common sub-
cluster B. From Equation 10 it follows that the entropy
of the complex cluster C can be written as a combination
of positive entropy terms related to its two overlapping
subclusters A1 and A2 and the negative term related to
their overlapped common element B:

Here the terms taken in brackets represent the so-called
Kikuchi short-hand notation for the numbers of cluster
configurations. Table 2 further explains this notation for
the case of simple clusters consisting of points, pairs, and
squares. Table 2 also shows that there is no need to eval-
uate the cluster combinatorial terms in the combinatorial

way. It is easier to evaluate directly the logarithms of
these terms. The combinatorial terms and the short-hand
notations are introduced here because the CVM equations
appear more compact if written in these notations. Equa-
tion 10 is well known in the CVM literature (e.g., Kikuchi
and Brush 1967) as the superposition approximation. We
will show below that this equation forms the basis of the
CVM.

Using Equation 10 one can construct the PD of the
cluster C preserving the distribution of its parent sub-
clusters A1 and A2. Therefore, if the subclusters have a
specified distribution of nearest-neighbor pairs, then the
supercluster C also will have the same distribution of
nearest-neighbor pairs. By using a sequence of Equations
10 and 11, one can construct the whole lattice (and cal-
culate its entropy) as a function of the given pair
distribution.

By relating the clusters A1 and A2 to pairs and the
subcluster B to their common point subcluster, one can
easily derive an entropy equation for a three-point chain
fragment (Fig. 3, left column). Using Equation 10 and
applying it in an iterative way to the already constructed
fragments, it is possible to derive a general equation for
the combinatorial term (and entropy) of the chain frag-
ment composed of n pairs:
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FIGURE 4. The two-dimensional building units of the simple
cubic lattice and of the nepheline lattice. The combinatorial terms
correspond to the relevant building units. Term is composed of
a nominator and a denominator. The nominator corresponds to a
chain unit (shown separately), and the denominator corresponds
to a subcluster of this chain unit, which is duplicated in the
process of construction of the particular two-dimensional unit
from the chain units.

nn-pair chain { – }• •
5 (12)

n215 6 { }fragment •

where n 2 1 is the number of points. Actually, Equation
12 is valid for any finite set of connected pairs (Bethe
lattice) that do not contain rings of clusters (polygons).
For an infinitely long chain (n → `), one obtains:

n{ – }• •
{ – – – – · · ·} 5 . (13)• • • • 1 2{ }•

Here n corresponds to the number of moles of pairs in
the chain. Generally, we will write the CVM formulae
with reference to 1 mol of a particular cluster and omit
n from equations such as Equation 13. The important re-
sult is that the entropy of an infinitely long chain contains
equal numbers of positive and negative terms. This is also
true for infinitely long chains composed of clusters of
other types.

The combinatorial term for a chain composed of sym-
metric clusters A intersecting through their common sub-
clusters B can be written:

The more general case of a chain composed of different
clusters A1 and A2 intersecting through their common
B1 and B2 subclusters can be written:

Equation 15 also can be applied to a chain composed
of similar but differently oriented asymmetric clusters.
For example, a chain of ordered pairs can be written:

Here, the black and white dots denote point clusters
with different distributions. The combinatorial formula
for the chain composed of square clusters takes the form:

Clearly, the pair cluster plays the role of the common
subcluster of two adjacent square clusters.

Equation 14 can be applied even to chains in which
the chain elements are in turn represented by infinitely
long chains. De Fontaine (1979) has shown that the en-
tropy of the square Ising lattice can be evaluated in the
exact way as ‘‘the chain of ladders’’ (Fig. 4):

The dashed lines here are intended to show that the
distribution of the cluster that appears in the denominator
of Equation 18 must be calculated not as an independent
single chain, but rather as a subcluster of the ladder clus-
ter that appears in the nominator. This can be done by
summation of the ladder PD over the points correspond-
ing to one row of the ladder. The exact evaluation of the
PD of the ladder cluster is difficult, however. The CVM
avoids this by approximating the distribution of the ladder
PD as that of a chain of square clusters. The PD of the
subcluster that appears in the denominator of Equation 18
is approximated as a PD of the single chain of pairs. By
substituting Equations 13 and 17 into Equation 18, the
combinatorial formula of Kikuchi (1951) for the square
net, can be obtained:



317VINOGRAD AND PUTNIS: Al, Si ORDERING IN ALUMINOSILICATES

FIGURE 5. The flat building units of Al, Si nets in alumino-
silicates; the notation is the same as in Figures 3 and 4.

Equation 19 is a rather accurate model for the entropy
of the square net. The approximation comes primarily
from the fact that the PD of the (isolated) square cluster,
which appears in Equation 19 is not exactly the same as
the distribution of the square cluster taken from a contin-
uous net. De Fontaine (1979) has shown that by using
similar ideas, one can construct an entropy equation for
a double layer composed of cubes (Fig. 4), treating it as
a chain of cubic chains:

Finally, the three-dimensional simple cubic lattice can
be treated as a chain of double layers composed of cubes.
Square lattices serve as the common subclusters of these
layers; therefore:

{cubic layer}
{cubic lattice} 5 . (21)

{square lattice}

It is important to note that the entropy term that ap-
pears in the denominator of Equation 21 is not exactly
the same as the entropy of the square in Equation 19
where it was not related to the cubic lattice. The differ-
ence is that when a square lattice is treated as a common
subcluster of the cubic layers, the PD of the square must
be calculated as that of the square subcluster of the cubic
cluster but not as the PD of the isolated square.

DERIVATION OF ENTROPY FORMULAE

FOR ALUMINOSILICATES

A similar construction scheme based on Equations 19,
20, and 21 applies to Al, Si nets of aluminosilicates. The
key point is to define and construct a ‘‘double layer’’
starting from a polyhedron (basic cluster) or several poly-
hedra that play the same role as the cubic cluster in the
cubic lattice.

The nepheline lattice can be considered as a chain of
double layers formed by two interconnected honeycomb
lattices. Flat honeycomb units [layers parallel to (001)]
represent the common subclusters of the adjacent layers.
The analogy between structural units of simple cubic and
nepheline lattices (Fig. 4) can be written:

nepheline5 6double layer
{nepheline lattice} 5 . (22)

{honeycomb lattice}

The combinatorial terms corresponding to the double
layer and to the honeycomb unit are expanded further in
Figure 4. These units in turn are considered as replica-

tions of smaller chain units. The double layer is con-
structed from polyhedral chains that overlap through po-
lygonal chains. The honeycomb lattice in turn is
considered as a chain of chains composed of hexagons.
The hexagonal chains overlap through single chains. The
combinatorial term of the honeycomb net is thus com-
posed of the two terms corresponding to the hexagonal
and single chains (Fig. 4).

When using Kikuchi’s notation for subclusters of the
basic clusters, we will usually draw them preserving their
exact geometry as elements of the basic clusters. In some
cases, we will use dashed lines to indicate the geometry
of the parent basic cluster. It is important to realize that
the PD of a given subcluster is obtained from the PD of
the parent basic cluster by summation over the ‘‘missing’’
points, i.e., points that are not included in the subcluster.
The dashed lines help to understand over which points
the summation was performed. The summation technique
will be further explained in more detail.

Figures 5 and 6 present similar developments of the
entropy formulae for leucite, feldspar, and cordierite. Fig-
ure 5 considers the scheme of evaluation of combinatorial
equations for flat building units, and Figure 6 considers
the topological units produced when these flat building
units are stacked on top of each other to form double
layers. Here, we will stress again that the polygons that
form the flat units are considered as subclusters of the
basic clusters that form double layers.

The combinatorial terms of the flat building units are
considered as the products of terms related to polygonal
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FIGURE 6. The chain A-units (e.g., LA1 and LA2 in leucite)
and their subclusters B-units (e.g., LB in leucite) needed for the
construction of the double layers of the Al, Si nets. The combi-
natorial terms that correspond to A- and B-units are given in the
right part of the figure. (In the cordierite clusters, white dots
designate T1 sites.)

and single chains. These terms are exactly analogous to
the two terms of Equation 19. In the same way, the com-
binatorial terms of the double layers are the products of
terms related to ‘‘polyhedral’’ chains (A-chains), and to
‘‘polygonal’’ chains (B-chains), which play the role of
common subclusters of two adjacent polyhedral chains.
Figure 6 shows that the topology of the elements of A-
chains in some cases can be described better not by poly-
hedral units but by polygons. Similarly, the topology of
B-chains in some cases can be represented better by sin-
gle chains. This happens because the coordination num-
ber of aluminosilicate nets is lower than that of the cubic
lattice. Because of the low coordination number, the clus-
ters in aluminosilicates in fact may have a geometry that
is intermediate to polygons and polyhedra.

In the case of leucite, the double layer is constructed
from two different chains LA1 and LA2, which intersect
through their common subcluster (LB-chain). The chain
LA2 is an example of a polygonal chain that plays the
role of the polyhedral chain in the construction scheme.
The combinatorial term of the leucite double layer can be
written as {LA1}{LA2}/{LB}2.

In the feldspar lattice, the flat building unit F (Fig. 5)

forms double layers parallel to (001) of two types (Fig.
6). The first layer can be described by replicating the
chain FA1, and the second one can be constructed by
replicating the chain FA2. The entropies of these layers
are {FA1}/{FB1} and {FA2}/{FB2} respectively.

Similar ideas can be used to construct the double layer
and the flat building unit C of cordierite. The double lay-
er, parallel to (001), is constructed from chains CA com-
posed of polyhedra of two different shapes. The cordierite
structure is usually visualized as rings of T2 tetrahedra
joined by T1 tetrahedra (Putnis 1992). The first polyhe-
dron (cordierite cage) is formed by two 6T2 rings con-
nected through six 4T22T1 rings. The second polyhedron
is formed by three 4T22T1 rings connected through T1

corners or by two 9-member 6T23T1 rings connected
through their subcluster 3T1. The flat unit C is formed by
6T2 hexagons and by 6T2 subclusters of the nine-member
6T23T1 rings.

To arrive at the final expressions for the entropies of
the 3D lattices, one has to consider these lattices as chains
composed of double layers, which intersect through their
common subclusters represented by the flat lattices on
Figure 5. Therefore, the combinatorial terms that corre-
spond to the double layers must be divided by the terms
that correspond to the flat building units. The combina-
torial term for the feldspar lattice takes the form ({FA1}/
{FB1})({FA2}/{FB2})/{F}2. The choice of the double
layers and the way they can be decomposed into cluster
terms is, of course, arbitrary, and thus one can construct
a number of CVM approximations for a given lattice.
However, if one uses basic clusters of similar size and
correctly accounts for their overlaps, the result would be
virtually the same.

The total entropy is thus composed of the positive en-
tropy terms corresponding to the basic clusters and the
terms of different sign corresponding to the overlapping
elements (subclusters) of the basic clusters. The PD of
the subclusters are trivially obtained from the PD of the
basic clusters through summations over the missing
points. The distribution of the polygons that form the flat
building units usually can be found directly by the ap-
propriate summations over the points of basic polyhedra.
However, in the model for leucite, the flat building unit
contains the 10-point cluster which is not included as a
part in any of the leucite basic clusters. The PD of this
cluster is then constructed from chain subclusters of the
basic clusters in a manner similar to the scheme of Figure
3. The main problem is to calculate the PD of the basic
clusters.

CALCULATION OF ENTROPIES OF THE

BASIC CLUSTERS

The main task here is to construct the PD of the basic
clusters as products of probabilities of smaller cluster el-
ements using Equation 10. Basically, one can start from
the point and pair clusters and construct chain fragments.
Using chain fragments as starting elements, one can then
construct polygons as shown in Figure 3, and starting
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FIGURE 7. The schemes of construction of basic clusters
from fragments of polygonal chains.

from polygons, one can arrive at PD of different poly-
hedra (Fig. 7). The question then is why one needs the
concept of the basic cluster if the PD of a basic cluster
can be found as a function of point and pair probabilities.
The problem is that the schemes of derivation shown in
Figures 3 and 7 lead to cluster probability distributions
that do not have the maximum entropy.

To arrive at a correct value of the total entropy from a
CVM equation, one has to maximize entropies of the ba-
sic clusters. From the above derivations, it is evident that
the total entropy of a lattice in a CVM approximation is
a function of the probability distributions of the basic
clusters. Maximum total entropy, therefore, then coin-
cides with the maximum entropy of the basic clusters.
The final requirement is to calculate the minimum value
of the free energy. However, at a fixed set of the order
and composition parameters (and, consequently, fixed
value of the configurational energy), the minimum of the
free energy coincides with the maximum of the entropy.

At a fixed set of point and pair probabilities, the entro-
py of a basic cluster can still vary as a function of high-
order correlations. However, construction schemes of Fig-
ures 3 and 7 result in asymmetric probability distributions
where the high-order correlation functions do not have
optimum values. The basic clusters are thus needed as the
objects on which the procedure of optimization of the
high-order correlations (maximization of the cluster en-
tropies) can be carried out.

The traditional approach (Sanchez and de Fontaine
1978) involves evaluating the cluster entropies as sym-

metric analytical functions of a generally large set of con-
figuration variables. These variables are then determined
from the condition of the minimum of the free energy of
a CVM model using standard optimization methods for
multi-variable functionals. Our approach is different.

In the Ising system with nearest-neighbor interactions,
one can divide the total number of configuration variables
into two unequal sets. The small set includes the variables
whose equilibrium values depend on both the energy and
entropy factors. These are the three variables that deter-
mine the probabilities of the nearest-neighbor pairs. The
large set includes the variables that constrain the corre-
lations between higher-order neighbors. These variables
depend only on the entropy factor, because the configu-
rational energy (Eq. 4) is insensitive to the high order
correlations. Therefore, the procedure of minimization of
the free energy can be fulfilled in two steps: fix the var-
iables of the small set and maximize the entropy of a
CVM model (i.e., the entropy of the basic clusters) with
respect to the large set of variables; minimize the free
energy with respect to the small set of variables. The
simplification arises from the fact that the maximization
of the cluster entropies can be achieved without intro-
ducing the variables of the large set.

The maximization of cluster entropies can be done in
two stages. First we construct initial cluster probability
distributions according to the schemes of Figures 3 and
7. Then we reconstruct (anneal) these clusters and in-
crease their entropy and symmetry up to the maximum.

CONSTRUCTION STAGE

An analysis of Figures 4, 5, and 6 shows it is necessary
to evaluate probability distributions and entropies of clus-
ters of three groups. These are the chain fragments (we
include fragments of branched chains in this group), poly-
gons, and polyhedra. We also need to know the entropies
of the subclusters of these clusters. If the cluster distri-
bution is known, the distribution of its subcluster can be
calculated easily by taking a sum over a set of points of
the cluster that are not included in the subcluster. For
example, the distribution of the 2-point I..L subcluster of
the chain fragment IJKL can be found as follows:

P 5 P (23)Oi..l i jkl
j,k

The constructive stage is based entirely on Equations
10 and 11. To use these equations, one must be sure that
both the parent clusters A1 and A2 have a commom sub-
cluster (the subcluster B must have identical PD in both
the A1 and A2). This condition is always met when A1
and A2 intersect through a point or through a nearest-
neighbor pair (we assume that the A1 and A2 are always
constrained to have the correct PD of points and pairs).
One can also be certain that the condition is met if A2
and A1 have identical PD. This means that the cluster A2
can be considered as a symmetrical image of A1. Usually,
many clusters can be considered as combinations of two
specific symmetrically related elements. The PD of these
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FIGURE 8. Two stages of evaluation of the probability distri-
bution of the hexagon. The first ‘‘construction’’ stage results in
the initial PD with asymmetric second- and third-neighbor cor-
relations. The second (annealing) stage alters the distribution of
the second and the third neighbors and makes them symmetric.
Dashed lines denote second-order correlations. The dotted line
represents the ‘‘reflection operation,’’ which forms the basis of
the construction scheme.

FIGURE 9. The general annealing scheme for basic clusters.
During the annealing process, the PD of the supercluster C is
decomposed into the PD of its A1, A2, and B subclusters, then
restored using the superposition operation. The indices in the
summation equations show that the summations are performed
over the points of the C included in the specified subclusters.

clusters thus can be constructed easily using Equation 10.
When A2 is related symmetrically to A1, we will refer
to Equation 10 as the ‘‘reflection operation.’’

Figure 3 shows that probability distributions and the
entropies of even-member rings (polygons) can be cal-
culated by sequential application of the reflection opera-
tion, first to pairs and then to chain fragments. The prob-
ability distribution of the common subcluster of two chain
fragments, which is needed in this procedure, can be de-
termined using equations analogous to 23. For example,
the PD of a hexagon IJKLMN (Fig. 8) is the following:

Pijklmn 5 PijklPinml/Pi..l (24)

where

Pijkl 5 Pij Pjk Pkl /(Pj Pk) (25)

and where Pi. . .l is given by Equation 23. Equation 25
follows from Equation 10 when it is applied successively
to pair fragments. Figure 7 shows that by using similar
reflection operations, one can construct various polyhedra
starting from polygons, polygonal chains, or from com-
binations of polygons with fragments of single chains.

ANNEALING STAGE

The probability distributions of the basic clusters which
can be calculated according to the schemes of Figures 3
and 7, are only approximations to the desired results. We
need to construct PD with maximum entropy but the con-
structed clusters have lower entropy due to the asym-
metry of the construction scheme. The construction
scheme (reflection operation) constrains only the proba-
bilities of the nearest-neighbor pairs to be identical, but
the probabilities of second-neighbor and higher-order
pairs in the constructed supercluster may not correspond
to its full symmetry. For example, in the IJKLMN hexa-
gon resulting from Equation 24, the probabilities of sec-
ond- and third-neighbor pairs are not all the same. Due
to the special property of the entropy function, the asym-
metric distribution has lower entropy than the symmetric
one.

The aim of the annealing algorithm is to increase the
entropy of the initially asymmetric cluster by changing
the distribution of its high-order neighbors. This change
is achieved in the course of a series of reconstructions
(self-transformations) of the cluster. The idea is based en-

tirely on the superposition operation (Eq. 10), which is
now applied to the initially constructed cluster. In fact,
using appropriate summation operations, one can ‘‘de-
compose’’ the supercluster into its subclusters A1, A2,
and B (Fig. 9), then recombine them into the supercluster
using Equation 10. In most cases, there are many ways
of choosing the set of A1, A2, and B, and if one performs
a series of different decompositions and recombinations,
it is possible to increase the symmetry and entropy of the
supercluster. The fact is that during the annealing step
(decomposition 1 recombination) the entropy of the su-
percluster can only increase or remain unchanged. During
the decomposition (summation operations) the correla-
tions between the points of the B1 and B2 subclusters
become lost. During the recombination, these correlations
are then restored but in a different way. In fact, in the
process of recombination, the A1 and A2 subclusters al-
ready are considered as totally independent (isolated) sub-
clusters, and the correlation between the points of B1 and
B2 is restored only as their common dependence on
points of the B subcluster. The independent correlations
between the points of B1 and B2 (if they existed in the
original supercluster) are now substituted by the depen-
dent correlations. The dependent correlations are gener-
ally less rigid then the independent ones, and thus the
total entropy of the supercluster increases.
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TABLE 3. Probability distribution of the square cluster
constrained by the parameters x 5 0.25, s 5 0.94,
and Qod 5 0

IJKL
Pijkl

before annealing
Pijkl

after annealing

BBBB
BBBA
BBAB
BABB
ABBB
BBAA
ABBA
AABB

0.1948599890
0.1418150110
0.1633863971
0.1418150110
0.1633863971
0.0024386029
0.0024386029
0.0024386029

0.2101048623
0.1449879443
0.1449879443
0.1449879443
0.1449879443
0.0024192492
0.0024192492
0.0024192492

BAAB
BABA
ABAB
BAAA
ABAA
AABA
AAAB
AAAA

0.0024386029
0.1032099890
0.0816500076
0.0000363971
0.0000249924
0.0000363971
0.0000249924
0.0000000076

0.0024192492
0.1000524393
0.1000524393
0.0000403673
0.0000403673
0.0000403673
0.0000403673
0.0000000163

FIGURE 10. Different schemes of annealing algorithms for
the hexagon. The scheme (a) is based on the reflection operation,
whereas the scheme (b) is based on the superposition operation.
The latter scheme is referred to as the general annealing algo-
rithm in the text. The clusters included by the dashed lines are
the ‘‘B’’ subclusters referred to in Equation 10.

Table 3 illustrates the change of the PD of the square
cluster as the result of the annealing algorithm. The sec-
ond column of Table 3 shows the PD of the asymmetric
square cluster resulting from the application of the re-
flection operation (Fig. 3) on a three-point chain frag-
ment. The third column shows how the square distribu-
tion changes as a result of the annealing process. One can
see that the probabilities of all symmetrically related con-
figurations of the square become equal. Vinograd et al.
(1997) have shown that the entropy of the square cluster
resulting from the annealing algorithm, if substituted into
Equation 19, results in the correct entropy of the square
lattice (‘‘square’’ CVM approximation). The subsequent
minimization of the free energy of the square Ising model
with respect to x and s parameters then leads to the value
of the Curie temperature, which coincides with the result
of Kikuchi (1951). This coincidence proves that the en-
tropy of the square cluster reaches the unique thermo-
dynamic maximum during the annealing algorithm.

The annealing algorithm allows the number of inde-
pendent variables describing the basic cluster distribution
to be reduced greatly. For example, using the annealing
algorithm, it is possible to evaluate the ‘‘square’’ approx-
imation for the square lattice Ising ferromagnet using of
just two parameters x and s (Vinograd et al. 1997),
whereas the traditional approaches (Kikuchi 1951; San-
chez and de Fontaine 1978) would require use of five
independent ‘‘fraction variables’’ or correlation functions
to treat the same problem. The advantages of the anneal-
ing algorithm become more evident in cases of approxi-
mations based on large clusters.

The annealing algorithm based on the sequential ap-
plication of the reflection operation [P(C) 5 P(A1)2/P(B)]
is illustrated in Figure 10a for the hexagon. It also can
be applied to any even-member ring, if the LRO scheme
of the cluster is consistent with the reflection operation.
Some ordering schemes (e.g., Fig. 10b) and some cluster
topologies prevent the use of the reflection operation. In
these cases, one can use a general annealing algorithm

based on the superposition operation (Eq. 10). The idea
is to choose any point in the C supercluster and consider
it as a B1 subcluster, then the A1 subcluster is defined as
the B1 plus all its nearest-neighbors (the A1 thus has the
geometry of a star cluster). The B subcluster then in-
cludes all points of the star excluding the central (B1)
point, and the A2 subcluster includes all points of the C
supercluster excluding the single point of B1. The an-
nealing step is then performed according to the given def-
inition of A1, A2, and B subclusters and then any other
point of C can be chosen for the next annealing step. The
cluster distribution converges to that of the maximum en-
tropy if the algorithm runs over all points of the C. A
few cycles over the points of C ordinarily are enough for
the entropy to converge. This generalized annealing al-
gorithm was used in the present study to calculate the PD
of two 16-point and one 8-point basic clusters that appear
in the CVM model of the feldspar lattice.

It is important to mention that the actual connectivity
of the cluster can be modified inside the annealing algo-
rithm by defining specific coordination of each point of
the cluster. Therefore, the connectivity of the initial clus-
ter can differ from the final connectivity. However, the
connectivity of the initial cluster must not be lower than
that of the final cluster. For example, the 16-point basic
cluster shown in the first row of Figure 7 can be con-
structed from the eightfold prism. The correlations be-
tween two pairs of points can be suppressed during the
annealing. Similarly, the cluster shown in the second row
of Figure 7 can be constructed from a cube.

COOPERATIVE ORDER/DISORDER TRANSITION IN THE

FELDSPAR LATTICE

The equation for feldspar entropy

S 5 k ln({FA1}{FA2}/{FB2}/{FB1}/{F}2) (26)

has been derived above for the case of the absence of
LRO. In fact, it can be easily generalized for the LRO
case if one starts constructing the basic clusters from or-
dered pairs. The pair distribution (Eq. 6) is a function of
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FIGURE 11. Equilibrium configurational entropy of Al-Si in
the feldspar lattice at different scaled temperatures. Solid lines
are the result of the present CVM approximation, and the dots
are the results of the Monte Carlo study (Myers et al. 1998). The
kinks in the lines correspond to the onset of the order/disorder
phase transition.

FIGURE 12. The dependence of the critical ordering temper-
ature on the Al/(Al1Si) ratio in plagioclase according to theo-
retical calculations (CVM and Monte Carlo) and experimental
data. The dashed line shows the experimental data of Carpenter
and McConnell (1984) on the location of I1-C1 transition in pla-
gioclase (scaled to kT/J). The J value was calculated on the as-
sumption that the transition in pure anorthite occurs at 2315 K
[extrapolation of the Carpenter and McConnell data by Holland
and Powell (1992)]. Other symbols are the same as in Figure 11.the three parameters x, s, and Qod. If one follows the

construction schemes of Figures 3, 5, 6, 7, and 9, it is
possible to derive the expression for the total entropy of
the feldspar lattice as a function of the same set of pa-
rameters. The details of this evaluation are omitted here.

The non-equilibrium configurational free energy of the
AlxSi12x solid solution in the feldspar lattice can be cal-
culated by substituting Equations 4 and 26 into Equation
3. By minimizing f with respect to s and Qod, it is pos-
sible to study the equilibrium behavior of the system at
any x 5 Al/(Al1Si) and kT/J.

Here we consider the AlxSi12x solid solution in the
range of 0 , x , 0.5, which is wider than the actual
range of plagioclase compositions (0.25 , x , 0.5). Cal-
culations of the equilibrium configurational entropy were
made at compositional intervals of Dx 5 0.01, and the
results are shown as the solid lines in Figure 11. The
entropy of the AlxSi12x solid solution (S/R) normalized to
one lattice point is plotted at three different temperatures
kT/J 5 0.6, kT/J 5 0.5 and kT/J 5 0. The kinks in the
curves correspond to an order/disorder transition, which
one can associate with the I1-C1 transformation. The
black dots in Figure 11 are equilibrium entropies calcu-
lated using the Monte Carlo method (Myers et al. 1998).
The comparison between the CVM and the Monte Carlo
calculations is discussed below.

In Figure 12, the onset of LRO at the I1-C1 phase
transition, as determined from the CVM model, is plotted
as a function of temperature and composition, again
shown as the solid line. The model predicts the phase
transition of the anorthite composition (x 5 0.5) at kT/J
5 0.675. The phase transition can be observed only at
compositions that approach the stoichiometry of x 5 0.5
and a certain critical value of the composition x exists
below which LRO cannot be stabilized at any tempera-
ture. Myers et al. (1998) estimated this value in the feld-

spar lattice as x 5 0.3 using the Monte Carlo method.
According to the present CVM approximation, this value
lies between x 5 0.28 and x 5 0.29 (Fig. 12).

DISCUSSION

The superposition approximation
The present study shows that the CVM models for var-

ious Ising lattices can be constructed using the same prin-
ciple, based on the sequential application of the super-
position approximation. This approximation also plays an
important role in the annealing algorithm. There is a cer-
tain analogy between the annealing algorithm and the
Natural Iteration (NI) method of Kikuchi (1974), which
is commonly used in the CVM as a tool for minimizing
free energy of the cluster models. Like the NI method,
the annealing algorithm is based on iterative application
of the superposition approximation, which is understood
as a relation between probabilities of clusters and their
subclusters. In the NI method, the superposition approx-
imation is derived from the condition of the free energy
minimum of the model, and the cluster distributions are
constrained to converge to the condition of the free en-
ergy minimum. The present study applies a similar iter-
ation scheme (annealing algorithm), not to the whole
model but to a single basic cluster, and constrains its dis-
tribution to converge to the maximum entropy at a given
pair distribution. The derivation of the superposition ap-
proximation in the present study does not require differ-
entiation of the free energy expression, and that simplifies
the mathematics significantly. In fact, the superposition
approximation (as it is understood in the present study)
is a consequence of the Bayes formula for a complex
stochastic event. The nature of the conversion is also dif-
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FIGURE 13. Equilibrium and non-equilibrium configurational
entropy of Al-Si in the feldspar lattice as predicted by the present
CVM model. The extrapolations into the non-equilibrium regions
(dashed lines) have been made by fixing the LRO parameter (Qod)
at the zero value and minimizing the free energy of the CVM
model only with respect to the SRO parameter (s). The dotted
line shows the entropy at complete LRO, defined by allowing Al
atoms to occupy only one sublattice.

ferent. The annealing algorithm represents a stochastic
process that converges to a steady state in a way similar
to a Markov chain.

Comparison with Monte Carlo
In Figures 11 and 12, the present results are compared

with the recent results of Monte Carlo simulations by
Myers et al. (1998) performed using the same assumption
that only nearest neighbors interact. The results of the two
approaches are in excellent agreement, demonstrating that
the clusters chosen to describe the feldspar structure and
the methods described above to determine the configu-
rational entropy are essentially correct. The slight differ-
ence in the calculated critical temperatures and compo-
sitions can be attributed to the internal limitation of the
CVM method. The approximation of choosing clusters of
finite size to represent an infinite lattice becomes less ac-
curate in the vicinity of the phase transition (Sanchez et
al. 1982). However, at temperatures or compositions only
a few percent away from the phase transition the results
of both methods almost coincide. This near coincidence
has two important implications.

First, it is clear that in many applications the CVM can
produce a result where accuracy is similar to the equilib-
rium Monte Carlo simulations. Being analytical, the
CVM model can be used to study non-equilibrium states
of ordering that are not easily achieved by the direct MC
method. An example of the calculation of the non-equi-
librium entropy constrained by the condition Qod 5 0 is
shown in Figure 13 (dashed lines). The system is allowed
to adjust to the change of temperature and x but only by
varying its SRO parameter. Using such calculations, it is
possible to investigate the thermodynamic behavior of a
system where LRO cannot develop for kinetic reasons.

Such a situation is illustrated by the metastable crystal-
lisation of synthetic anorthite in the disordered C1 form
within the stability field of the ordered I1 form (Kroll and
Müller 1980; Carpenter 1991).

The second implication is that the CVM can be used
in combination with the Monte Carlo method. In fact,
using the CVM allows the extraction of values of config-
urational entropy from equilibrium Monte Carlo simula-
tions. To calculate entropy, it is necessary to know the
probability distribution of certain clusters at the particular
kT/J value. These cluster distributions can be calculated
easily from Monte Carlo simulated configurations by
counting the frequencies of different cluster configura-
tions. In the same way the CVM provides a means for
extracting entropies from the inverse Monte Carlo simu-
lations (Dove and Heine 1996). Using the inverse Monte
Carlo method, one can simulate a non-equilibrium distri-
bution of atoms that corresponds to particular spectro-
scopic characteristics of the atomic distribution in a sam-
ple rather than to a particular temperature. Recently, the
inverse Monte Carlo method was applied to the simula-
tion of the distribution of Al and Si in cordierite, leucite,
and analcime consistent with the available 29Si NMR data
(Dove and Heine 1996). The CVM formulae for cordi-
erite and leucite derived in the present study could be
directly used for such calculations.

The CVM also allows extraction of thermodynamic in-
formation from NMR data in a more direct way. Such
calculations for layer silicates and cordierites have been
described by Vinograd and Putnis (1998) and Putnis and
Vinograd (1999). The basis for the calculation resides in
the theoretical evaluation of the probability distribution
of star-like clusters as functions of the order parameters.
From these star-distributions, one can calculate the theo-
retical NMR spectrum. The SRO and LRO parameters are
then determined by comparing the theoretical and exper-
imental spectra. The optimal set of the order parameters
is used to constrain a high-order CVM entropy equation.
This method for evaluating the Al, Si entropies avoids
the prediction of negative values for Al-rich phases,
which can occur when using the star approximation.

Comparison with experiment
The order/disorder transition that can be simulated in

the present model corresponds to the I1-C1 phase tran-
sition, which has been observed experimentally in pla-
gioclase feldspars at anorthite-rich compositions (Carpen-
ter and McConnell 1984). However, according to the data
of Carpenter and McConnell (1984), the transition is
characterized by a steeper slope in T-x space. We have
plotted the data of Carpenter and McConnell (1984) in
Figure 12 as the dashed line, scaled to a transition tem-
perature in anorthite of 2315 K.

The disagreement between the calculations and the ex-
perimental data probably can be reduced by taking into
account the interactions between higher-order Al and Si
neighbors. When second- and third-neighbor interactions
are allowed, tendencies to other conflicting ordering
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schemes will develop. For example, the tendency to avoid
Al-O-Si-O-Al contacts (Dempsey rule) is in conflict with
the anorthite ordering scheme that makes these contacts
favorable. These conflicting ordering schemes can occur
at Al/(Al1Si) ratios , 0.5. At the 0.5 ratio, the regular
alternation scheme of anorthite has no alternatives. How-
ever, as the Al/(Al1Si) ratio decreases, the alternative
ordering schemes begin to compete for the most effective
decrease of the free energy. This competition is likely to
shift the slope of the computed I1 ↔ C1 transition line
in the correct sense. We are currently investigating this
hypothesis.
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