
INTRODUCTION

The Margules equation has been used by many investiga-
tors to describe the mixing properties of mineral solid solu-
tions (e.g., Ganguly and Saxena 1987). By means of the
Margules equation, the molar excess Gibbs energy (G ex) of a
ternary solid solution is written as follows (e.g., Mukhopadhyay
et al. 1993):

Gex = X1X2(X2W12 + X1W21) + X1X3(X3W13 + X1W31) +
              X2X3(X3W23 + X2W32) + X1X2X3C123 (1)

where X and W stand for the mole fraction of the subscripted
component and the Margules parameter for the subscripted pair,
respectively. The term C 123 is the ternary interaction param-
eter, which is independent of the composition and the binary
Margules parameters. If the ternary system consists of only
symmetric regular binaries, the ternary interaction parameter
is equal to zero (Mukhopadyay et al. 1993). Otherwise, there
are no reasons for assuming C123 = 0 without experimental con-
firmation.

As an alternative method for describing the mixing proper-
ties of multicomponent solutions, the Wilson equation (Wil-
son 1964) has been used for real solution mixtures. The molar
excess Gibbs energy of a ternary solution is written as follows:
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where R is the universal gas constant, T is the absolute tempera-
ture, and Λ ij  stands for the Wilson parameter for the pair of com-
ponents i and j. By definition, Λ ii is equal to 1 in Equation 2.

By an appropriate differentiation of Equation 2, the activ-
ity coefficient of component i (γi) is expressed as follows:
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The activity coefficients of the components in the ternary
solution can be computed by combining the Wilson param-
eters for the three binary solutions whose components make
up the ternary system. Thus, the main advantage of the Wilson
equation is its potential applicability to the ternary solution
without the ternary interaction parameter.  When the number
of the components is n, the equations for Gex and activity coef-
ficients can be obtained by substituting n for the limit sum 3 in
Equations 2 and 3. Therefore, we can compute activity coeffi-
cients for solutions of arbitrary number of components by com-
bining the Wilson parameters for binary mixtures.

The major drawback of the Wilson equation is its inappli-
cability to partially miscible solutions.  Renon and Prausnitz
(1968) modified the Wilson equation by introducing additional
parameters to make it applicable to those mixtures. Applica-
tions of their equation (the NRTL equation) to partially mis-
cible multicomponent mixtures might require more compli-
cated calculations than those of the Wilson equation.

This study focuses on an application of the Wilson equa-
tion to mineral solid solutions. As an illustrative example, this
study analyzes the experimental results on fluid–
(Fe,Mn,Mg)TiO3 equilibria (Kubo et al. 1992). Although there
are many studies on cation exchange reactions between miner-
als and aqueous solutions, only a few studies deal with both
binary and ternary solid solutions. The reason for choosing
fluid–(Fe,Mn,Mg)TiO3 equilibria is the availability of such
experimental data. Based on the results of the three binary cat-
ion exchange experiments, the present study obtains the mix-
ing properties of the ternary solid solution. The present study
computes the compositions of (Fe,Mn,Mg)Cl2(aq) in equilibria*E-mail:yshibue@sci.hyogo-u.ac.jp
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with (Fe,Mn,Mg)TiO3 solid solutions and compares these com-
puted results with the experimental data. This study also com-
pares the Wilson equation with the Margules equation in re-
gard to the predictability of the fluid-phase compositions.

A subsidiary purpose of the present study was to use the
nonlinear programming technique of Britt and Luecke (1973)
for obtaining the Wilson parameters and Gibbs energy of reac-
tions. Although the computational technique is more compli-
cated than ordinary linear least-square regression, the results
of the calculation obey the law of mass action.

THE WILSON EQUATION

The Wilson equation is based on the Flory-Huggins equa-
tion (Flory 1941; Huggins 1941) and the concept of “local vol-
ume fraction” (Wilson 1964), both of which have been only
rarely referred to in the literature of geology, mineralogy, and
geochemistry. The derivation of the Flory–Huggins equation
was given in detail by Flory (1944) and is not repeated here.
Only the resultant Flory–Huggins equation for a ternary mix-
ture is shown below. Thereafter, this paper derives the Wilson
equation by introducing the concept of “local volume fraction”
following the method of Prausnitz et al. (1986).

According to the Flory–Huggins equation, the molar Gibbs
energy of mixing (G mixing) is expressed as follows:

Gmixing = RT(X1lnφ1 + X2lnφ2 + X3lnφ3) (4)

where X1, X2, and X3 stand for the mole fractions of the solvent,
solute 1, and solute 2, respectively, and φ1, φ2, and φ3 are the
volume fractions of the solvent, solute 1, and solute 2, respec-
tively.

Concept of “local volume fraction”

In a ternary solution being considered here, the focus is on
a central molecule of type i. The probability of finding a mol-
ecule of type j, relative to finding a molecule of type i, adjacent
to the central molecule is expressed in terms of the mole frac-
tion and two Boltzmann factors:
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where Xji  and Xii  stand for the mole fractions of components j
and i around the central molecule of type i. The terms λji and λii

are related to the potential energies of a j–i and an i–i pair,
respectively. The ternary interaction parameter does not appear
in Equation 5. It should be noted that Equation 5 considers
only the nearest-neighbor molecules around the central mol-
ecule in a spherical liquid-like environment. The equation then
assumes that the lattice sites on which the molecules are lo-
cated could be displaced by the interaction energies between
molecules.

Wilson (1964) defined the local volume fraction of compo-
nent i (φii) as follows:

φ ii
i ii

1 1i 2 2i 3i

=
+ +

V X
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(6)

where V1, V2, and V3 stand for the molar volumes of the
subscripted components in their pure state. It should be noted
that φ11 + φ22 + φ33 is not always equal to 1 (Prausnitz et al.
1986).  As a result, the local volume fraction is not equivalent
to the volume fraction and should be considered as a concep-
tual quantity in the microscale environment.   The Wilson pa-
rameter (Λij ) is defined as follows:
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By the above definition, Λ ii  is equal to 1. By combining
Equations 5 to 7, φii  is expressed as follows:

φii
ii
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Wilson (1964) substituted the local volume fractions of the
components, instead of their volume fractions, into the Flory–
Huggins equation (Eq. 4). After rearrangement, G mixing can be
expressed as follows:

Gmixing = –RT{[ X1ln(Λ11X1 + Λ12X2 + Λ13X3)] + [X2ln(Λ21X1 +
                Λ22X2 + Λ23X3)] + [X3ln(Λ31X1 + Λ32X2 + Λ33X3)] –
                   (X1lnX1 + X2lnX2 + X3lnX3)}. (9)

Therefore, the molar excess Gibbs energy (Gex) can be derived
as follows:

G G T X X X X X Xex mixing R= − + +( )1 1 2 2 3 3ln ln ln (10)

which is equivalent to Equation 2.
Activity coefficients of the individual components can be

obtained from the partial derivatives of the excess Gibbs en-
ergy with respect to the number of moles of that component as
follows:
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where n and n i stand for the total number of moles of all the
components and the number of moles of component i, respec-
tively.  Using Equations 9 and 10, the activity coefficient of
component i can be expressed as Equation 3.

APPLICATIONS  TO FLUID -(FE,MN)TIO3, FLUID -
(MN,MG)TIO3, AND FLUID -(FE,MG)TIO3 EQUILIBRIA

Kubo et al. (1992) carried out cation exchange experiments
on the following systems at 600 °C and 1 kbar by using the
method of Uchida et al. (1989):

(A) FeTiO3 + MnCl2(aq)  = MnTiO3  + FeCl2(aq)

(B) MnTiO3 + MgCl2(aq) = MgTiO3  + MnCl2(aq)

(C) MgTiO3 + FeCl2(aq)  = FeTiO3  + MgCl2(aq)

Total molarity of metal chloride in the aqueous phase was
1.0 M in all their experiments. Only (Fe,Mn,Mg)TiO3 was ob-
served as the solid product.

By using the Wilson equation for describing the activity
coefficients for the components of the solid phase, the Gibbs
energy of reaction A can be written as follows:
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where K stands for the equilibrium constant and YFe and YMn

designate the ratios of the molalities of the subscripted species
to the total molality of metal chloride in the fluid phase.  The Y
values are expressed as follows:

Y
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∆G0 for Reaction B or C can be obtained by changing the sub-
scripts appropriately. For example, YMg denotes the following
ratio.

Y
m

m m m
Mg

MgCl (aq)

FeCl (aq) MnCl (aq) MgCl (aq)

2

2 2 2

=
+ + (15)

The present study ignores the ionic species and assumes
that the ratios of activity coefficients of the neutral aqueous
species are equal to 1. Kubo et al. (1992) reported the concen-
trations of the aqueous species in units of molarity. Because
the present study calculates the ratios of concentrations, the
conversion factor of molar scale into molal scale does not ap-
pear in Equations 13 to 15.

Values of ∆G 0 for reactions A–C and the Wilson param-
eters were obtained by using the following constraints:
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The derivation of Equation 17 was given in Hala (1972).
By imposing the above constraints on the calculations, the cal-
culated ∆G 0 values as well as the Wilson parameters are inter-
nally consistent. For the calculation of all the values, the non-
linear programming technique derived by Britt and Luecke
(1973) was used in the present study. Solid and fluid composi-
tions were also computed for each experimental data point. This
study considers that the standard errors of measurements of
both compositions are 0.005 in terms of mole fraction or the
ratio of molality. Substitutions of the calculated compositions
of the solid and fluid phases and the Wilson parameters into
Equation 12 make the resultant lnK values become constant.
The same is true for reactions B and C. Detailed calculation
procedures are shown in the Appendix.

The results of the calculations of ∆G 0/RT and the Wilson
parameters are listed in Table 1. The experimental and com-
puted compositions are summarized in Tables 2–4. From Equa-
tion 12 and the equivalent expressions for reactions B and C,
we get the following equations:
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If we specify the solid compositions, activity coefficients
of the components in the solid phase are determined by Equa-
tion 3. By using the activity coefficients at specific solid com-
positions and the ∆G 0 value for the relevant reaction, the fluid-
phase compositions can be obtained from the left-hand sides
of Equations 18–20. Then cation exchange isotherms for reac-
tions A, B, and C are computed from Equations 18, 19, and 20,
respectively (Figs. 1–3). The computed isotherms show good
agreement with the experimental results of Kubo et al. (1992).
Activities of end-member components are plotted against the
mole fractions for the three binary solid solutions (Fig. 4). The
(Fe,Mn)TiO3 and (Fe,Mg)TiO3 solid solutions show almost ideal
behavior whereas (Mn,Mg)TiO3 shows distinct nonideality.

It is possible to compute the ∆G 0 value and the Wilson pa-
rameters for each reaction and to compare the results with the
internally consistent values in Table 1. Calculations on each
reaction gave internally inconsistent results. Furthermore, the
iterative computations often showed divergences due to the
nonlinearity of the Wilson equation. Therefore, this study did
not attempt to extract thermodynamic quantities from the indi-
vidual exchange reactions.

Calculations of fluid–(Fe,Mn,Mg)TiO3 equilibria

By substituting the Wilson parameters into Equation 2, the
molar excess Gibbs energy of (Fe,Mn,Mg)TiO3 solid solution
at 600 °C and 1 kbar is expressed as follows.

G ex(kJ/mol) = –7.260[XFeTiO3
ln(XFeTiO3 + 1.314XMnTiO3 +

                            0.962XMgTiO3
)

+ XMnTiO3
ln(0.585XFeTiO3 + XMnTiO3 + 0.393XMgTiO3

)
+ XMgTiO3

ln(0.406XFeTiO3

+ 0.371XMnTiO3 +XMgTiO3
)] (21)

Table 1. ∆G0 for reactions A–C and Wilson parameters for
(Fe,Mn)TiO3, (Mn,Mg)TiO3, and (Fe,Mg)TiO3 solid solu-
tions

Reaction A: FeTiO3 + MnCl2(aq) = MnTiO3 + FeCl2(aq)

Reaction B: MnTiO3 + MgCl2(aq) = MnTiO3 + MnCl2(aq)

Reaction C: MgTiO3 + FeCl2(aq) = FeTiO3 + MgCl2(aq)

∆ ∆ ∆G
T

G
T

G
T

A B C

R R R

0 0 0

1 462 0 042 0 975 0 036 0 487 0 035= = − = −. ( . ), . ( . ), . ( . )

ΛMnFe = 0.585(0.220), ΛFeMn= 1.314(0.370), ΛMgMn = 0.371(0.087)

ΛMnMg = 0.393(0.073), ΛFeMg = 0.962(0.213), ΛMgFe = 0.406(0.138)
Notes: Values in parentheses indicate the standard errors. RT is 7.260
(kJ/mol) at 600 °C.
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TABLE  2. Experimental and calculated results on the cation ex-
change reaction FeTiO3 + MnCl2(aq) = MnTiO3 + FeCl2(aq)

  Experimental results*         Calculated results†
XFeTiO3

YFe XFeTiO3
YFe

0.928 0.752 0.939 0.748
0.891 0.624 0.893 0.623
0.864 0.550 0.859 0.553
0.964 0.828 0.962 0.828
0.898 0.632 0.897 0.632
0.944 0.740 0.937 0.742
0.485 0.184 0.485 0.183
0.325 0.086 0.318 0.104
0.404 0.137 0.402 0.141
0.617 0.259 0.613 0.264
0.521 0.159 0.502 0.192
0.493 0.163 0.483 0.182
0.182 0.053 0.182 0.054
0.484 0.150 0.471 0.175
0.557 0.180 0.537 0.213
0.723 0.311 0.698 0.337
0.286 0.093 0.286 0.092
0.835 0.512 0.836 0.511

* Kubo et al. (1992).
† Calculated results of this study.
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By using Equation 3, activity coefficients of FeTiO3,
MnTiO3, and MgTiO3 in the ternary solid solution are expressed
as follows:

On the basis of the above expressions of activity coefficients,
the compositions of (Fe,Mn,Mg)Cl2(aq) in equilibria with
(Fe,Mn,Mg)TiO3 were computed. The solid compositions were
taken from the experimental results of Kubo et al. (1992).  The
method of Shallcross et al. (1988) was used for the present
calculation. Let us define Z values as follows.

Z 1   =   
Y F e

Y Mn

,     Z 2   =   
Y Mn

Y Mg

,     Z 3   =   
Y Mg

Y F e

From the solid compositions, activities of the end-member
components can be computed. Thus, Z 1, Z 2, and Z 3 values are
obtained from Equations 18–20. If we use Z1 and Z2 values, Y
values are calculated as follows:

Y
Z Z

Z Z Z
Fe =

+ +
1 2

1 2 2 1
(25)

Y
Z

Z Z Z
Mn =

+ +
2

1 2 2 1
(26)

Y
Z Z Z

Mg =
+ +
1

11 2 2

 (27)

FIGURE 1. The cation exchange isotherm computed in this study
(solid line) and the experimental data points (Kubo et al. 1992) for the
reaction FeTiO3+MnCl2(aq) = MnTiO3+FeCl2(aq). XFe and YFe stand for
the mole fraction of FeTiO3 in the solid phase and the molality ratio
defined by Equation 13.

Other solutions of Y values are possible when we use the set
of Z1 and Z3 or the set of Z2 and Z3. Therefore, three sets of Y
values are possible. The weighted average values of fluid-phase
compositions can be obtained from the following equations:
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TABLE  3. Experimental and calculated results on the cation ex-
change reaction MnTiO3 + MgCl2(aq) = MgTiO3 + MnCl2(aq)

  Experimental results*        Calculated results†
XMnTiO3

YMn XMnTiO3
YMn

0.480 0.716 0.480 0.722
0.456 0.692 0.450 0.715
0.528 0.745 0.530 0.735
0.707 0.775 0.705 0.781
0.136 0.559 0.140 0.555
0.581 0.761 0.584 0.748
0.339 0.666 0.334 0.680
0.046 0.410 0.064 0.404
0.605 0.769 0.609 0.754
0.663 0.780 0.666 0.769
0.147 0.524 0.127 0.538
0.914 0.846 0.894 0.872
0.295 0.669 0.296 0.666
0.081 0.484 0.093 0.478
0.168 0.553 0.151 0.568
0.320 0.649 0.311 0.672
0.393 0.648 0.379 0.695
0.908 0.861 0.897 0.875
0.813 0.768 0.793 0.813
0.743 0.797 0.744 0.794
0.356 0.706 0.361 0.690

* Kubo et al. (1992).
† Calculated results of this study.

TABLE  4. Experimental and calculated results on the cation ex-
change reaction MgTiO3 + FeCl2(aq) = FeTiO3 + MgCl2(aq)

  Experimental results*        Calculated results†
XMgTiO3

YMg XMgTiO3
YMg

0.053 0.183 0.059 0.180
0.122 0.248 0.100 0.261
0.040 0.118 0.035 0.120
0.151 0.318 0.143 0.324
0.055 0.185 0.060 0.183
0.359 0.548 0.375 0.524
0.262 0.452 0.267 0.446
0.167 0.328 0.155 0.338
0.168 0.357 0.170 0.355
0.346 0.507 0.347 0.505
0.525 0.595 0.515 0.612
0.922 0.922 0.925 0.919
0.911 0.904 0.910 0.905
0.792 0.787 0.785 0.796
0.807 0.772 0.787 0.797
0.474 0.605 0.482 0.592
0.943 0.944 0.946 0.941
0.594 0.611 0.571 0.647
0.715 0.762 0.724 0.750
0.343 0.456 0.321 0.487
0.198 0.378 0.194 0.382
0.457 0.607 0.471 0.585
0.716 0.713 0.701 0.734
0.608 0.623 0.586 0.657
0.452 0.565 0.448 0.571
0.361 0.493 0.351 0.508
0.650 0.722 0.661 0.706

* Kubo et al. (1992).
† Calculated results of this study.

FIGURE 3. The cation exchange isotherm computed in this study
(solid line) and the experimental data points (Kubo et al. 1992) for the
reaction MgTiO3+FeCl2(aq) = FeTiO3+MgCl2(aq). XMg and YMg stand for
the mole fraction of MgTiO3 in the solid phase and the molality ratio
defined by Equation 15.

FIGURE 2. The cation exchange isotherm computed in this study
(solid line) and the experimental data points (Kubo et al. 1992) for the
reaction MnTiO3+MgCl2(aq) = MgTiO3+MnCl2(aq). XMn and YMn stand
for the mole fraction of MnTiO3 in the solid phase and the molality
ratio defined by Equation 14.

The weights correspond to the mole fractions of the compo-
nents common to Zi and Zj.

Computed fluid compositions and the experimental results
of Kubo et al. (1992) are compared in Figure 5.  The agree-
ment is generally good.  Although the computed compositions
deviate from the experimental compositions in the region of
low YFe, the deviations are within ±0.08 in terms of the Y value
for any component (Table 5). It can be concluded that fluid

compositions in equilibria with the ternary solid solutions may
be predicted from the binary cation exchange experiments.

COMPARISON WITH  THE MARGULES EQUATION

In the introduction, it was argued that the Margules equa-
tion without the ternary interaction parameter is not accurate
for describing the mixing property of the ternary solid solution
consisting of asymmetric binaries. The accuracy of the compo-
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FIGURE 4. Activity (a) vs. composition (X) relations of
(Fe,Mn)TiO3, (Mn,Mg)TiO3, and (Fe,Mg)TiO3 solid solutions
at 600 ˚C and 1 kbar.

FIGURE 5. Fluid compositions in equilibria with (Fe,Mn,Mg)
TiO3 solid solutions. Fluid compositions tied by lines correspond to
the same solid compositions. The experimental compositions of solid
and fluid phases are taken from Kubo et al. (1992). The tie lines are
omitted when the computed compositions closely agree with the
experimental compositions.

sitions of the fluid phase predicted by the Margules equation
and by the Wilson equation can now be compared.

By an appropriate differentiation of Equation 1, activity
coefficients of components 1 and 2 in a binary solid solution
are written as follows (e.g., Mukhopadhyay et al. 1993).

RTlnγ1 = [W12 + 2(W21 – W12)X1]X2
2 (31)

RTlnγ2 = [W21 + 2(W12 – W21)X2]X2
1 (32)

From the experimental results listed in Tables 2–4, ∆G 0

values for reactions A–C and the Margules parameters were
computed for the three binary solid solutions. The constraints
(Eqs. 16 and 17) were not used in the calculation. The compu-
tation of three unknowns for each reaction was carried out with
the nonlinear programming technique, following the procedure
shown in Appendix.

The results of the calculation are listed in Table 6. By setting
C123 = 0, activity coefficients of the components in the ternary
solid solution of (Fe,Mn,Mg)TiO3 were computed on the basis
of the experimental compositions of the solid phase (Table 5).
Activity coefficients of the three components can be written as
follows (Mukhopadhyay et al. 1993):
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TABLE  5. Experimental and calculated results on the cation ex-
change reactions between (Fe,Mn,Mg)TiO3 and
(Fe,Mn,Mg)Cl2(aq)

     Experimental results*                             Calculated results†
XFeTiO3

XMnTiO3
YFe YMn YFe YMn

0.919 0.056 0.704 0.228 0.699 0.225
0.924 0.027 0.762 0.108 0.738 0.118
0.367 0.317 0.095 0.590 0.129 0.599
0.916 0.054 0.709 0.214 0.693 0.217
0.498 0.062 0.230 0.257 0.296 0.253
0.424 0.315 0.119 0.580 0.153 0.593
0.428 0.270 0.115 0.544 0.162 0.558
0.340 0.315 0.099 0.592 0.119 0.601
0.504 0.318 0.168 0.569 0.189 0.596
0.489 0.199 0.185 0.464 0.208 0.486
0.376 0.189 0.122 0.461 0.159 0.495
0.230 0.293 0.027 0.580 0.080 0.607
0.297 0.206 0.069 0.510 0.120 0.530
0.397 0.429 0.087 0.654 0.131 0.672
0.278 0.218 0.045 0.522 0.110 0.545
0.301 0.495 0.045 0.667 0.091 0.704
0.576 0.221 0.233 0.510 0.247 0.503
0.489 0.480 0.180 0.763 0.180 0.763
0.564 0.409 0.206 0.740 0.225 0.723
0.248 0.031 0.132 0.223 0.182 0.195
0.782 0.043 0.501 0.174 0.516 0.167
0.219 0.660 0.076 0.779 0.062 0.792
0.159 0.118 0.087 0.492 0.080 0.466
0.249 0.159 0.084 0.458 0.111 0.494

* Kubo et al. (1992).
† Calculated results of this study.

RTlnγFeTiO3 = WFeMnX2
MnTiO3(1 – 2XFeTiO3) + 2WMnFeXFeTiO3XMnTiO3

                                   (1 – XFeTiO3)
                 – 2WMnMgXMnTiO3X

2
MgTiO3 – 2WMgMnX2

MnTiO3XMgTiO3

                 + 2WMgFeXFeTiO3XMgTiO3(1 – XFeTiO3) + WFeMgX2
MgTiO3

                                   (1 – 2XFeTiO3) (33)

RTlnγMnTiO3 = 2WFeMnXFeTiO3XMnTiO3(1 – XMnTiO3) + WMnFeX2
FeTiO3

                                   (1 – 2XMnTiO3)
                 + WMnMgX2

MgTiO3(1 – 2XMnTiO3) +2WMgMnXMnTiO3XMgTiO3

                                   (1 – XMnTiO3)
                   – 2WMgFeX2

FeTiO3XMgTiO3 – 2WFeMgXFeTiO3X
2
MgTiO3

(34)

RTlnγMgTiO3 = –2WFeMnXFeTiO3X
2
MnTiO3 – 2WMnFeX2

FeTiO3XMnTiO3

                 + 2WMnMgXMnTiO3XMgTiO3(1 – XMgTiO3) + WMgMnX2
MnTiO3

                                   (1 – 2XMgTiO3)
                 + WMgFeX2

FeTiO3(1 – 2XMgTiO3) + 2WFeMgXFeTiO3XMgTiO3

                                   (1 – XMgTiO3) (35)

Compositions of (Fe,Mn,Mg)Cl2(aq) in equilibria with
(Fe,Mn,Mg)TiO3 were computed by the same method described

TABLE  6. ∆G0 for reactions A–C and Margules parameters* for
(Fe,Mn)TiO3, (Mn,Mg)TiO3, and (Fe,Mg)TiO3 solid solu-
tions

∆ ∆ ∆G
T

G
T

G
T

A
0

B
0

C
0 

R
 

R
 

R
= = − = −1 513 0 058 0 908 0 043 0 427 0 037. ( . ), . ( . ), . ( . )

WFeMn = 0.337(0.577), WMnFe = 3.254(1.661), WMnMg = 11.549(1.105),
WMgMn = 10.119(0.866), WMgFe = 5.015(0.956), WFeMg = 6.227(0.707)
Notes: Values in parentheses indicate the standard errors. RT is 7.260
(kJ/mol) at 600 °C.
* Calculated from the results on each binary reaction. Reactions A, B,
and C are indicated in Table 1 and in the text.

before (see Equations 28 to 30). After the computation of the
fluid phase compositions, the sum of the distances were ob-
tained between the experimental compositions and the calcu-
lated compositions in the ternary system. The overall fit to the
experimental data using the Wilson equation is better than with
the Margules equation having no ternary interaction parameter
(Σdistances = 0.00938 vs. 0.01271). Thus, the prediction of the
ternary solid solution–fluid equilibria by the Wilson equation
is more accurate than that by the Margules equation on the ba-
sis of data on binary cation exchange reactions.
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APPENDIX

Britt and Luecke (1973) developed a nonlinear program-
ming technique for obtaining the parameters in various types
of regression equations. Their method was used in the present
study to obtain the Gibbs energy of reactions, the Wilson pa-
rameters, and the compositions of solid and fluid phases.

To avoid lengthy notations and equations, the following
abbreviations are used hereafter:B1 = ∆G

T
A
0

R
, B2 =  ΛMnFe, B3 = ΛFeMn,

B4 = 
∆G

T
B

R

0

, B5 = ΛMgFe, B6 = ΛMnMg, B7 = ΛFeMg.
Using the constraint equations shown in the text (Eqs. 16

and 17), the other two unknowns (∆G0/RT for reaction C and Λ
MgFe) were obtained from the above seven parameters.  In this
study, the parameter F i was defined as follows for all the data
points relating to reaction A:
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where Xi and Yi stand for the calculated values of XFeTiO3
 and YFe,

respectively, for the i-th experimental data point. Similarly, by
denoting Xi and Yi as the calculated values of XMnTiO3

 and YMn for
the i-th experimental data point, F i for reaction B is defined as
follows.

F B
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X B X

B X

X B X

X B

B X X

i 4
i i

i i

i i

i i

i

i i

i

i i

= +
−( )

−( )








 − + −

+ −( )










−
−( )

+ −( ) −
−( ) −( )

+ −

ln ln

                

1

1
1
1

1

1

1 1

1

5

6

6

6

5

5

(A2)

For reaction C, the following expression can be derived through
the constraint equations.

F B B
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where X i and Y i stand for the calculated values of XMgTiO3 and

YMg for the i-th experimental data point. In the present study,
calculations were carried out under the condition that all of the
F i values should be 0, which is equivalent to the condition that
lnK for each reaction becomes constant. In other words, the
computed results satisfy the law of mass action.

Standard errors of the measurements of both X and Y values
are assumed to be 0.005 (= σ).  Then this study minimizes the
value of Q , which is defined as follows:

Q X x Y y= −( ) + −( )[ ]−∑1
2

2 2 2
σ

i
i
meas

i i
meas

i (A4)

where the superscript, meas, stands for the measured value.
The calculated values for solid and fluid compositions are des-
ignated as x and y, respectively.

We define L i , which corresponds to the weight of the i-th
experimental datum, as follows.

L
F

X

F

Yi
(j) i

(j)

i
(j)

i
(j)

i
(j)= ∂
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+ ∂
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σ2

2 2

(A5)

The superscript (j) designates the value at the j-th iteration.
Also a matrix C(u,v) and a function Ei  defined below are ob-
tained.

C

F

B
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Then true parameters for Bi values, bi (i = 1···7), are obtained
from the following simultaneous linear equation.
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After b i, xi, and yi values are obtained, those are substituted
into Equations A1–A3 and A5–A7 as B i, X i, and Y i.   Then the
newly computed Fi , Ei, and C(u,v) are substituted into Equa-
tions A8–A11. Successive iterations are repeated until all of
the unknowns and the compositions of solid and fluid phases
are converged. The following convergence criteria were adopted
as follows:

|Bu
(j+1) – Bu

(j)| ≤  0.00005 (u = 1 ⋅⋅⋅ 7), |Xi
(j+1) – Xu

(j)| ≤  0.0001,
|Y i

(j+1) – Y i
(j)| ≤  0.0001.

After solving Equation A8, the solid and fluid compositions
are computed by the following equations.

X x X X
F

Xi
(j)

i i
(j)

i
meas

i
(j) i

(j)

i
(j)− = − + ∂

∂






λ σ2 (A9)

Y y Y Y
F

Yi
(j)

i i
(j)

i
meas

i
(j) i

(j)

i
(j)− = − + ∂

∂






λ σ2

(A10)

where


