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ABSTRACT

Microbiologic reduction of synthetic and geologic Fe31 oxides associated with four Pleis-
tocene-age, Atlantic coastal plain sediments was investigated using a dissimilatory Fe
reducing bacterium (Shewanella putrefaciens, strain CN32) in bicarbonate buffer. Experi-
ments investigated whether phosphate and anthraquinone-2, 6-disulfonate, (AQDS, a humic
acid analogue) influenced the extent of crystalline Fe31 oxide bioreduction and whether
crystalline Fe31 oxides in geologic materials are more or less reducible than comparable
synthetic phases. Anaerobic incubations (108 organisms/mL) were performed both with
and without PO4 and AQDS that functions as an electron repository and shuttle. The
production of Fe21 (solid and aqueous) was followed with time, as was mineralogy by X-
ray diffraction. The synthetic oxides were reduced in a qualitative trend consistent with
their surface area and free energy: hydrous ferric oxide (HFO).goethite.hematite. Bac-
terial reduction of the crystalline oxides was incomplete in spite of excess electron donor.
Biogenic formation of vivianite [Fe3(PO4)2·8H2O] and siderite (FeCO3) was observed; the
conditions of their formation was consistent with their solubility. The geologic Fe31 oxides
showed a large range in reducibility, approaching 100% in some materials. The natural
oxides were equally or more reducible than their synthetic counterparts, in spite of asso-
ciation with non-reducible mineral phases (e.g., kaolinite). The reducibility of the synthetic
and geologic oxides was weakly effected by PO4, but was accelerated by AQDS. CN32
produced the hydroquinone form of AQDS (AHDS), that, in turn, had thermodynamic
power to reduce the Fe31 oxides. As a chemical reductant, it could reach physical regions
of the oxide not accessible by the organism. Electron microscopy showed that crystallite
size was not the primary factor that caused differences in reducibility between natural and
synthetic crystalline Fe31 oxide phases. Crystalline disorder and microheterogeneities may
be more important.

INTRODUCTION

Dissimilatory metal reducing bacteria (DMRB) are an
important group of microorganisms that reduce metal ox-
ides in geochemical environments. Under anoxic condi-
tions, these organisms can use Fe31 [or Mn41] as electron
acceptors coupled to the oxidation of organic matter or
H2, and gain energy for maintenance and growth from
such reactions. Fe31 and Mn41 reduction is directly (en-
zymatically) linked to the electron transfer chain in
DMRB (Myers and Myers 1997). DMRB are common in
groundwaters and sediments (Coates et al. 1995; Fred-
rickson and Gorby 1996) and influence the aqueous geo-
chemistry, surface chemistry, and mineralogy of these en-
vironments (Baedecker et al. 1992; Chapelle 1993;
Lovley et al. 1990; Chapelle and Lovley 1992). DMRB
also influence the Fe21 mineralization of geologic mate-
rials and sediments. The formation of siderite, magnetite,
and vivianite are generally attributed to the activity of
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DMRB (Mortimer et al. 1997; Postma 1981; Pye et al.
1990; Suess 1979) but little is known about the role of
the microorganisms in such mineralization and if their
contribution is direct or indirect.

Fe31 and Mn41 oxides are insoluble at the pH of most
natural waters and so differ from soluble, aqueous elec-
tron acceptors such as O2 and NO3 that are also used by
facultative DMRB. As a result of low solubility, direct
contact between the DMRB and the oxide surface is re-
quired for reduction to occur (Arnold et al. 1988; Lovley
et al. 1991; Myers and Nealson 1988). Whereas the total
aqueous concentration of a dissolved electron acceptor
may be utilized by a microorganism, more complex, but
unresolved relationships exist when the electron acceptor
is associated with a solid phase. Preliminary studies in-
dicated that amorphic or poorly crystalline oxides were
the bioavailable Fe31 form in aquatic sediments (Lovley
and Phillips 1987; Phillips et al. 1993). It is now clear,
however, that amorphous, poorly crystalline, and crystal-
line Fe31 oxides are all available, to varying degrees, for
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reduction by DMRB (Arnold et al. 1988; Phillips et al.
1993; Roden and Zachara 1996). Many factors appear to
control the extent of Fe31 oxide reduction in presence of
excess electron donor, including: medium composition;
post-reduction geochemical reactions; the structural, ther-
modynamic, and surface chemical properties of the solid-
phase oxide; and physiological factors related to DMRB
metabolic status and growth stage. The interrelationships
between these factors and their quantitative effects have
not been established.

Recently we investigated the bacterial reduction (by
Shewanella putrefaciens) of amorphous hydrous ferric
oxide (HFO) in different buffers both without and with a
quinone (anthraquinone-2, 6-disulfonate, AQDS) that
functions as an electron shuttle (Fredrickson et al. 1998).
The AQDS enhances microbial respiration and electron
delivery to the oxide, and contains a quinone group that
is known to be present in humic substances (Stevenson
1985; Thorn et al. 1992). The DMRB transformed the
HFO into magnetite, siderite, vivianite, and/or green rust
(Fredrickson et al. 1998). The identity of the secondary
phases formed and their crystallinity were influenced by
the buffer composition, the presence of P, and the respi-
ration/reduction rate that was enhanced by AQDS. The
nature of mineralization accompanying reduction was
found to influence the extent of Fe31 reduction.

Magnetite formation, for example, was found to
sequestor 60% of the Fe31 in a form that was not available
to S. putrefaciens under the experimental conditions ex-
amined. AQDS was found to increase the bioreduction
rate of HFO, but the HFO was fully transformed to sec-
ondary mineral products regardless of whether AQDS
was present or not. It is not known whether comparable
minerals result from the bioreduction of crystalline Fe31

oxides, or whether humic acid analogues such as AQDS
can enhance the extent of bioreduction of crystalline Fe31

oxides, which unlike HFO, are generally not fully re-
duced by DMRB (Roden and Zachara 1996).

Here we investigate chemical and mineralogic factors
influencing the bacterial reducibility of synthetic and nat-
ural Fe31 oxides. Our objectives were: (1) to define the
effects of an electron shuttle (AQDS) and nutrient phos-
phate (via vivianite precipitation) on the extent of bac-
terial reduction of crystalline Fe31 oxides (e.g., percent
Fe31 reduced) and, (2) to determine if crystalline Fe31

oxides of geologic origin were more, less, or equally re-
ducible than synthetic solids and the causes for differ-
ences if observed. The experimental system involved
synthetic HFO, goethite, and hematite, and four sandy-
textured, Pleistocene-age, poorly consolidated subsurface
sediments containing grain coatings or surface precipi-
tates of crystalline Fe31 oxides. These solid phases were
inoculated with a facultative subsurface DMRB (S. pu-
trefaciens, CN32) in bicarbonate buffer, both with and
without AQDS and PO4, using lactate as the electron do-
nor. The evolution of chemical [Fe21, acetate] and min-
eralogic byproducts and the DMRB population were fol-

lowed with time as a basis for defining mineralogic
controls on respiration and bioreduction.

EXPERIMENTAL PROCEDURES

Fe31 oxides and sediments

Hydrous ferric oxide (HFO) was prepared by neutral-
ization of a FeCl3·6H2O solution with NaOH followed by
repeated washing with deionized water to remove chlo-
ride (Lovley and Phillips 1986). A medium surface area
goethite (52.3 m2/g) and hematite (5.2 m2/g) were pre-
pared by hydrolysis of Fe31 solutions and aging at ele-
vated temperatures according to procedures of Schwert-
mann and Cornell (1991). The precipitates were extracted
three times with acidified hydroxyl-amine hydrochloride
(Chao and Zhou 1983) to remove potentially residual fer-
rihydrite, washed repeatedly to remove residual extrac-
tants, dialyzed against deionized distilled H2O, freeze-
dried, and stored in a glovebox under anaerobic condi-
tions. Freeze drying was used to stabilize the solid phases
as stored aqueous suspensions often develop biofilms.
Both goethite and hematite were well crystallized, dis-
played characteristic d-values consistent with literature
values, and were free of crystallographic impurities at the
level discernible by X-ray diffraction (XRD).

Unconsolidated, sandy-textured geologic materials
were collected from Pleistocene-age, Atlantic Coastal
Plain sediments in Oyster, VA, Milford DE, and Eaton-
town, NJ. The sampling depths were approximately 3 m
below land surface; overriding surface soils were char-
acterized as Ultisols. The sediments are beach deposits
and are dominated by sand textured quartz grains. Crys-
talline Fe31 oxides exist as grain coatings, discrete micro-
precipitates, and intergrain cements in these sediments
imparting a yellowish-orange to red coloration to the sed-
iment. Kaolinite and poorly crystalline Al-oxides exist as
primary, fine-grained (,2.0 mm) accessory phases to the
Fe31 oxides. The mineralogy of two of these locations
(Oyster and Milford) was reported (Zachara et al. 1995).

The subsurface sediments were air-dried and passed
through a 2 mm sieve prior to characterization or use.
Surface area was measured by multipoint N2(g) adsorption
with B.E.T analysis. Extractable oxides were determined
using three techniques: hydroxylamine hydrochloride was
used for the extraction of amorphous Fe oxyhydroxides
and reducible manganese oxides (Chao and Zhou 1983),
dithionite-citrate-bicarbonate (DCB) was used for extrac-
tion of reducible Fe oxides (Mehra and Jackson 1960),
and ammonium oxalate was used for removal of amor-
phous aluminosilicates as well as poorly crystalline Fe
oxides (Schwertmann 1964; Fey and LeRoux 1977).

The medium used in all experiments contained trace
minerals (Table 1). Nitrilotriacetic acid (NTA), a com-
plexing agent, was included as common practice to main-
tain solubility of the cationic metals at circumneutral pH.
The stability constants for the dominant NTA complexes
of the trace metals (from Smith and Martell 1997) are
shown in Table 1. NTA has potential to influence bacte-
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TABLE 1. Medium composition

Components
Concentration,

M log KNTA*

Na lactate 2.7 3 1022

NH4Cl 2.5 3 1022

KCl 1.2 3 1023

CaCl2 6.1 3 1024 7.67 (CaNTA2)
Nitrilotriacetic acid 7.1 3 1024

MgSO4·7H2O 1.1 3 1023 6.75 (MgNTA2)
NaCl 1.5 3 1023

MnSO4·H2O 2.7 3 1024 9.5 (MnNTA2)†
ZnCl2 8.6 3 1025 11.9 (ZnNTA2)
FeSO4·7H2O 3.2 3 1025 9.85 (FeNTA2)
CaCl2·2H2O 6.1 3 1025

CoCl2·6H2O 3.8 3 1025 11.7 (CoNTA2)
Na2MoO4·2H2O 9.3 3 1026

Na2WO4·2H2O 6.8 3 1026

NiCl2·6H2O 9.1 3 1026 12.8 (NiNTA2)
CuSO4·5H2O 3.6 3 1026 13.1 (CoNTA2)
AlK(SO4)2·12H2O 1.9 3 1026

H3BO3 1.5 3 1025

NaHCO3 3.0 3 1022

NaH2PO4‡ 3.9 3 1023

anthraquinone-2, 6-disulfonate‡ 9.0 3 1025

* I 5 0, T 5 25 8C (I 5 ionic strength).
† Estimated.
‡ Treatment-specific components.

rial Fe reduction by solubilizing both Fe31 (Lovley and
Woodward 1996) and biogenic Fe21 (Urrutia et al., un-
published manuscript). Experiments and speciation cal-
culations by our group (Zachara et al., unpublished manu-
script) and others (Urrutia et al., unpublished manuscript)
have shown that the trace metals and NTA (at 0.7 mM)
have little or slight discernable impact on the extent of
bacterial Fe31 oxide reduction under conditions identical
to those used in this study. The NTA, under these con-
ditions, is saturated to large degree by cations with either
a larger stability constant (e.g., Cu, Ni, Zn, and Co; Table
1) or in higher concentration (e.g., Ca/Mg) than Fe21.
NTA enhances the extent of bacterial reduction of crys-
talline Fe31 oxides at concentrations in excess of 1mM
(Urrutia et al., unpublished manuscript) because of aque-
ous complexation and other reasons that have not been
fully resolved. The chemical behavior of NTA-metal
complexes in oxide suspensions is complex and not easily
generalized (Girvin et al. 1996).

Bacteria and media
S. putrefaciens strain CN32 (Subsurface Microbial

Culture Collection) was provided courtesy of Dr. David
Boone (Oregon Graduate Institute). Strain CN32 was iso-
lated from a subsurface core sample (250 m beneath the
surface) obtained from the Morrison Formation during
drilling of a shale-sandstone sequence in northwestern
New Mexico. The sediments were anaerobic at the time
of collection based on appearance (blue-green in color)
and high Fe21 content, .1.5 g of 0.5 N HCl-extractable
Fe21/kg. Also, groundwater sampled from the overlying
Cubero Sandstone had DO below detections (,0.2 mg/
L) and Fe21 and S22 concentrations at 0.8 and 13.6 mg/
L, respectively (Fredrickson et al. 1997). The organism

was identified as S. putrefaciens by phylogenetic analysis
of the 16S rRNA gene sequence (D. Boone, unpublished
results). CN32 was routinely cultured aerobically in tryp-
tic soy broth (TSB), 30 g/L (Difco Laboratories, Detroit,
Michigan) and stock cultures were maintained at 280 8C.

The components in the defined medium used for the
Fe reduction experiments are listed in Table 1. The me-
dium was buffered with 30 mM NaHCO3. Sodium lactate
(20 mM) was added as the electron donor and, in select
treatments, filter-sterilized (0.2 mm) anthraquinone-2, 6-
disulfonate (AQDS, Sigma Chemical Co., St. Louis, Mis-
souri) was added separately. Medium was dispensed into
Balsch tubes, purged with O2-free N2:CO2 (80:20),
stopped with butyl rubber closures, crimp sealed, and
autoclaved.

CN32 cells were harvested by centrifugation from TSB
cultures, washed with buffer to remove residual TSB, re-
suspended in bicarbonate and purged with O2-free N2.
Cells were added to media to obtain a final concentration
of 2.4 3 108 cells/mL. HFO was maintained as an aque-
ous suspension under anaerobic conditions and was added
to media to obtain a final concentration of 50 mM. The
crystalline Fe31 oxides were added as lyophilized pow-
ders under anaerobic conditions to a total Fe31 concentra-
tion of 50 mM. Air dry sediments were added at a mass
concentration to yield 1 g of ,2.0 mm sediment per 10
mL of media. Unlike the Fe31 oxide suspensions, the total
reducible Fe31 concentrations in the sediment incubations
was variable, but in all cases electron donor (lactate) was
present in excess of that required to microbially reduce
all of the Fe31 present. Tubes were incubated in the dark
at 30 8C and agitated at 100 rpm. Each treatment was
replicated three times and separate tubes were sacrificed
at each time-point for analyses. Controls consisted of me-
dia that received 1 mL of sterile, anaerobic buffer in place
of CN32 cell suspension.

Fe21 production in DMRB (TSB grown) inoculated,
Fe31 oxide suspensions with excess e-donor follows an
approximate linear rate during the early stages of reduc-
tion (Roden and Zachara 1996; Urrutia et al. 1998; Fred-
rickson et al. 1998). After this linear phase, reduction
slows and eventually ceases after periods ranging from
less than 20 to over 50 days depending on oxide, buffer,
and inoculum. The rate reduction results from depletion
of the electron acceptor [e.g., Fe31], chemical and min-
eralogic change to the aqueous and solid phase, thermo-
dynamic barriers, enzyme deactivation, cell mortality, and
other complex and unresolved chemical and physiological
factors. All inoculated suspensions of Fe31 oxide and sub-
surface sediments were incubated slightly beyond the
time point where the biotic reduction reaction ceased.
This period ranged from 27–40 d and is considered one
cell cycle.

Analyses
At select time-points, replicate tubes were removed

from the incubator and transferred to an anaerobic (Ar:
H2, 95:5) glovebag (Coy Laboratory Products, Inc., Ann
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Arbor, Michigan). Butyl rubber stoppers were removed
and one mL of suspension was removed and filtered
through a 0.2 mm polycarbonate filter directly into one
mL of 0.5 N Ultrex HCl. This fraction was considered as
the soluble fraction and analyzed for Fe21, phosphate, lac-
tate, acetate, and reduced AQDS, where appropriate. The
filtration step was shown to be effective in the removal
of both fine-grained Fe31 oxides and biogenic products
(Fredrickson et al. 1998). In another aliquot, pH was mea-
sured under anaerobic conditions using a Ross combina-
tion electrode. HCl-extractable Fe21 was obtained by
placing 1 mL of suspension directly into one mL of 2N
Ultrex HCl, mixing, and allowing equilibration for at
least one hour before analyzing for Fe21. The 2N HCl
extraction has been shown to be effective in the disso-
lution of most Fe21 compounds resulting from bacterial
Fe reduction, with the possible exception of coarse-
grained crystalline magnetite (Fredrickson et al. 1998).

Fe21 in acidified filtrates (0.2 mm) or extracts was de-
termined using the ferrozine assay (Lovley and Phillips
1986). Phosphate concentrations were determined using
an ammonium paramolybdate assay (Olsen and Sommers
1982). Lactate and acetate were determined at the final
sampling time-points by HPLC. Reduced AQDS was
quantified by measuring the absorbance of the reduced
form, anthradihydroquinone-2, 6-disulfonate (AHDS), at
405 nm. Major cations (Ca, Na) were analyzed by ICP-
AES and anions (Cl2) by ion chromatography. Inorganic
carbon was measured on an unacidified aliquot, and
HCO3 was computed from the final pH, ionic strength,
and ionization constants.

X-ray diffraction
Mineral residue from the reduction experiments was

mixed with glycerol under anaerobic conditions and the
solid slurry was smeared on a glass slide for X-ray dif-
fraction (XRD) analysis. The slides were maintained un-
der anoxic atmosphere until the time of analysis. The
XRD apparatus consisted of two Philips Wide-Range Ver-
tical Goniometers with incident-beam 2u compensating
slits, soller slits, fixed 2 mm receiving slits, diffracted
beam graphite monochromators, and scintillation counter
detectors. The X-ray source was a Philips XRG3100 X-
ray Generator operating a fixed-anode, long-fine-focus Cu
tube at 45 Kv, 40 mA (1800 W). Instrument control was
by means of Databox NIMBIM modules (Materials Data
Inc., Livermore, California). The International Center for
Diffraction Data Powder Diffraction File database on CD-
ROM (ICDD PDF-2, Sets 1-46 1996) was the source of
reference powder diffraction data.

Electron microscopy
Samples of synthetic goethite and hematite, and Fe31

oxide-containing mineral separates of the Milford and Ea-
tontown hematite sediments were examined using a field
emission scanning electron microscope (FESEM) manu-
factured by LEO (model 982) to obtain crystal morphol-
ogy and qualitative chemical compositions. Morphologic

analyses were performed at 5 keV and 90 mA and utilized
the below lens detector or in-lens detector, or a combi-
nation of the two. Compositional analyses by energy dis-
persive spectrometry (EDS) utilized a liquid nitrogen
cooled Oxford Pentafet detector with the microscope op-
erating at 20 keV accelerating potential and 90 mA
current.

Thermodynamic calculations
Thermodynamic calculations were performed to assess

the degree of solubility equilibrium of the biogenic pre-
cipitates, and to predict stable solid phase mineral assem-
blages as a function of pe, pH, buffer composition, and
P concentration. These calculations were performed with
the MINTEQA2 code (Allison et al. 1991) and a ther-
modynamic database assembled by the authors that con-
tained the best available equilibrium constants for perti-
nent aqueous species and solid phases. Thermodynamic
data for the Fe21-CO -H2O and the Fe21-PO -H2O sys-22 32

3 4

tems were taken from Bruno, et al. (1992) and Al-Borno
and Tomson (1994), respectively. Other thermodynamic
data was taken from Smith and Martell (1997) and Wag-
man et al. (1982).

RESULTS

Microbial reduction of single phase oxides
Reduction extent and Fe/P chemistry. The HCl ex-

traction is effective in solubilizing most biogenic Fe21

solid phases (Fredrickson et al. 1998), and it is used here
as a measure of the total extent of reduction (i.e., Fe21

production). All three single phase oxides (hematite, goe-
thite, and HFO) were reduced to variable extents by S.
putrefaciens in bicarbonate buffer with 4 mM PO4, but
the presence of 100 mM AQDS stimulated reduction (Fig.
1a). The stimulatory effect was greatest after 4 days and
was most substantial for hematite where the total extent
of reduction (after 39 d) was increased by over ten-fold
(Table 2). Almost all the HFO was reduced (95%) after
39 days, and the extent of goethite reduction was en-
hanced by a factor of 3.5 when AQDS was present (Table
2). In the absence of AQDS, ,1% of the hematite was
reduced and approximately 9% of the goethite was re-
duced. These values are in ratio to the surface area of the
two crystalline oxides, and the extent of reduction with-
out AQDS was consistent with that observed for these
same oxides using a different Shewanella strain (S. alga,
strain BrY; Roden and Zachara 1996).

Soluble Fe21 increased with time and reduction extent
for all three oxides in the absence of AQDS (Fig. 1b).
Fe21 is strongly sorbed by all three oxides at circumneu-
tral pH (Fredrickson et al. 1998), and for that reason as
well as precipitation (to be discussed below), aqueous
Fe21 concentrations were below those extracted by HCl.
Phosphate acts to counteract Fe21 sorption through for-
mation of strong aqueous complexes. As will be shown
below, however, P concentrations changed during the
course of bioreduction. AQDS caused marked increases
in aqueous Fe21 concentration (Fig. 1b), with those for
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FIGURE 1. HCl-extractable (a) and aqueous Fe21 (b) observed in bioreduction experiments with synthetic Fe31 oxides, including
goethite, hematite, and hydrous ferric oxide (HFO). Results show the impact of AQDS. All experiments contained bicarbonate buffer
and 4 mM PO4.

TABLE 2. Extent of reduction of synthetic single phase Fe31

oxides

Oxide
Fe21-HCl

(mM) % Reduced

Hematite* 0.3 0.6
Hematite 1 AQDS* 5.0 9.9
Goethite 4.6 9.2
Goethite 1 AQDS 16.4 32.8
HFO 6.7 13.4
HFO 1 AQDS 47.3 94.6

Notes: Reduction by S. putrefaciens CN32 in suspension with 4 mM
PO4. The initial concentration of each oxide was 50 mM Fe31 and the
equilibration time was 39 days.

* Experiment 1, no X-ray diffraction collected.

hematite and goethite being most dramatic (approximate-
ly ten-fold). Fe concentrations decreased with time in21

(aq)

the goethite and HFO suspensions with AQDS. Fe21 pre-
cipitation in biogenic solids, surface roughening provid-
ing more sites for Fe21 adsorption, or retarded Fe21 de-
tachment with reduction extent may explain this observed
trend.

Phosphate, at 4 mM concentration, is a normal con-
stituent of the basal media used to culture and to study
DMRB/Fe31 oxide reductive mechanisms (Kostka and
Nealson 1995; Lovley and Phillips 1986; Lovley and
Phillips 1988; Lovley et al. 1991; Mortimer and Coleman
1997; Roden and Zachara 1996). Phosphate is strongly
sorbed by Fe oxides (Colombo et al. 1994; Geelhoed et
al. 1997; Nilsson et al. 1992; Torrent et al. 1992) and has
been shown to influence the nature of mineralization re-
sulting from the bioreduction of HFO (Fredrickson et al.
1998). In the absence of CN32 cells, PO4(aq) concentra-
tions showed the impact of increasing degrees of sorption
through the series hematite,goethite,,HFO (Fig. 2a).

HFO was highly effective at sorbing P. The extent of
sorption noted on the three phases was consistent with
their surface area and the anion-sorbing site concentra-
tions of the different suspensions. The 4 mM PO4 over-
whelmed the sorption capacity of the two crystalline ox-
ides, with a majority of the PO4 remaining as a soluble
constituent in the absence of DMRB metabolism.

Aqueous PO4 varied greatly with time in some of the
oxide suspensions inoculated with CN32 (Fig. 2b). In sus-
pensions with the crystalline oxides, PO4(aq) concentra-
tions decreased as Fe21 was generated by bioreduction.
There was close parallel between the concentration of
HCl-extractable Fe21 and decrease in PO4(aq) that was most
evident for goethite and hematite with AQDS. AQDS,
which enhanced oxide bioreduction, also stimulated PO4

loss from solution in the crystalline oxide suspensions.
This effect was most pronounced for hematite, where
phosphate concentrations remained high during the
course of incubation without AQDS, but decreased four-
fold with AQDS. Aqueous PO4 concentrations in the HFO
suspension were further depressed over those noted in the
abiotic controls, but time variant effects and correlations
with the extent of reduction were not evident. The de-
crease in PO4(aq) may be attributed to assimilation by bac-
terial cells, or to precipitation reactions with Fe21.

Mineralogic transformations. The synthetic goethite
and hematite were compositionally pure, highly crystal-
line, and exhibited typical morphologies associated with
such laboratory preparations. The goethite existed as ap-
proximate 500 nm laths and the hematite as 300 nm
spheres (Fig. 3). Both were present as 2–10 mm aggre-
gates in the freeze-dried powders used as material sources
for the bioreduction experiments. Electron microscopy of
suspensions showed that these aggregates dispersed to
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FIGURE 2. Soluble PO4 in Fe31 oxide suspensions without (a) and with (b) CN32 inoculum.

smaller flocs (ø1–2 mm) containing 5–10 crystallites
when placed in the incubation media (not shown).

Mineralogic changes to many of the Fe31 oxides ac-
companied bioreduction. Fredrickson et al. (1998)
showed that HFO was fully transformed by CN32 to a
mixture of siderite and vivianite after 7 d in bicarbonate
buffer with 4 mM P. Mineral products were the same both
with and without AQDS, but AQDS enhanced the appar-
ent crystallinity of carbonate and phosphate solids as ev-
idenced by sharper XRD peaks with higher count rates.
In the bioreduction experiments here, the crystalline Fe31

oxides were only partially reduced (e.g., 2–30%), but
crystalline products were nonetheless observable by
XRD.

Vivianite was observed in goethite suspension after 11
d in presence of AQDS and P (Fig. 4), and a combination
of both vivianite and siderite was identified after 39 d
(Fig. 4). Vivianite, therefore, formed before siderite as a
bioreduction product in presence of 4 mM P. Both vi-
vianite and siderite were removed by the HCl extraction
(Fig. 4). The signal-to-noise ratio of the goethite diffrac-
tion pattern was improved after HCl extraction, possibly
by removal of other amorphous or poorly crystalline fer-
rous products. In the absence of P with AQDS, siderite
was the only crystalline reduction product of goethite ob-
served by XRD in bicarbonate buffer when approximate-
ly 25% of the solid was reduced (Fig. 4). In the absence
of AQDS, lessor amounts of goethite were reduced by
CN32 (approximately 15%). Under these conditions, vi-
vianite was the only reduction product when P was pres-
ent and no crystalline products were observed by XRD
in its absence (not shown). Crystalline reduction products
were only observable for hematite in the presence of
AQDS and P, where vivianite was observed (Fig. 5).
Magnetite, a biogenic transformation product of HFO

(Fredrickson et al. 1998) was not observed by XRD in
any of crystalline Fe31 oxide incubations.

Microbial reduction of subsurface materials

Bioreduction extent and Fe/P chemistry. S. putrefa-
ciens was effective in utilizing Fe31 oxides in the subsur-
face materials as an electron acceptor. Millimolar con-
centrations of Fe21 were generated by CN32 in
bicarbonate buffer (Fig. 6a). The amount of Fe21 pro-
duced was in qualitative proportion to the mass of Fe31

removed by dithionite-citrate-bicarbonate (DCB) extrac-
tion of the sediments (Table 3). The highest concentration
of evolved Fe21 was observed in the Eatontown hematite
sediment that had the highest concentration of DCB ex-
tractable Fe31 (366 mmol/g). A direct relation between
Fe31 reduction with the amount of poorly crystalline com-
ponents, as extracted by NH2OH·HCl or ammonium ox-
alate, was not evident. Phosphate is a required nutrient
for growth, but the bioreduction of Fe31 oxides in the
subsurface materials was not sensitive to its presence or
absence. To a large degree, equivalent amounts of Fe31

reduction were observed in suspensions of similar com-
position with and without PO4 (Fig. 6a, Table 4).

Unlike the effect of PO4, however, AQDS had a clear
stimulatory effect on reduction of the natural Fe31 oxides,
increasing their availability as electron acceptors for re-
spiring microorganisms (Fig. 6a; Table 4). This stimula-
tory effect was similar to, but less pronounced, than ob-
served for the synthetic oxides. AQDS increased the
extent of bioreduction of the synthetic solids at experi-
ment termination by factors of 3.5 to over 10 (Table 2),
whereas the enhancement noted for the subsurface ma-
terials ranged from 1.2 to 2.2. The effect of AQDS was
reduced by PO4 in all the subsurface sediments except the
Eatontown hematite.
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FIGURE 3. Field emission scanning electron micrographs of synthetic goethite (a and b) and hematite (c and d). Scale bars are
variable as noted.

The extent of reduction (both without and with AQDS)
in the Eatontown materials (10.0–28.7%, Table 4), was
similar to that noted for synthetic goethite (9.2–32.8%,
Table 2). However, a much greater percentage of the DCB
extractable Fe31 was reduced by CN32 in the Oyster and
Milford sediments. Almost all the Fe31 in the Milford
sediment was bioreducible (Table 4). CN32 reduced crys-
talline Fe31 oxides in the geologic materials because the
amounts of poorly crystalline Fe31 oxides, as defined by
NH2OH·HCl or ammonium oxalate extraction, in all of
these sediments were low (Table 3).

In absence of PO4, the Fe concentrations increased21
(aq)

with increasing amounts of bioreduction (Fig. 6b). When
PO4 was present, Fe concentrations were uniformly21

(aq)

lower, ranging between 0.3–0.6 mM (Fig. 6b), and tended
to decrease with incubation time and amount of Fe21

evolved (with the exception of the Eatontown hematite).
Aqueous PO4 concentrations measured immediately fol-
lowing inoculation indicated only a small amount of P

was sorbed, with most PO4 remaining in the aqueous
phase (Fig. 7, day 0). With time and bioreduction, how-
ever, PO4 concentrations generally decreased (Fig. 7, days
4, 11, and 27). The extent of PO4 loss was qualitatively
related to Fe21 generation.

Mineralogic alterations. Biogenic alteration of the
natural Fe31 oxides was investigated for the Milford and
Eatontown hematite sediments. The bioreducibility of the
Fe31 oxide fraction of these two sediments was different
(Table 4). The Milford exhibited the highest Fe oxide
fractional reduction (e.g., 100% with AQDS, Table 4),
whereas the Eatontown showed the largest overall amount
of reduction [e.g., 10.5 mM of HCl-Fe21, Table 4]. An
oxide containing fine fraction was removed from the pre-
dominantly quartz sand matrix of both sediments by sus-
pending them in 0.001 mol/L NaClO4 and adjusting the
pH to 8 with NaOH. This pH adjustment dispersed fine-
grained oxide and clay particle coatings from the sand
grains and allowed the collection of these separates by
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FIGURE 4. X-ray diffractograms (XRD) of unreduced goe-
thite, and goethite subjected to bioreduction by CN32 under the
noted conditions. Shown also is the XRD of a bioreduced goe-
thite after HCl-extraction. Diffraction files for reference phases
shown for comparison. (CPS 5 counts per second.)

FIGURE 5. X-ray diffractograms (XRD) of unreduced he-
matite, and hematite subjected to bioreduction by CN32 under
the noted solution conditions. Diffraction files for reference
phases shown for comparison.

sedimentation. The separates were dialyzed against deion-
ized water and freeze-dried.

The Milford separate contained kaolinite, quartz, and
goethite as primary mineralogic components (Fig. 8). Its
XRD pattern was complex with significant peak overlap
that complicated phase identification, and broadening
suggestive of submicrometer crystallites of phyllosilicates
and possibly Fe31 oxides. On average, the material con-
sisted of micrometer-sized particle aggregates (Fig. 9a).
The backscattered Fe images of these were diffuse, sug-
gestive of nano-particulate Fe31 oxides in mixture with
other mass dominant phases. The EDS spectrum of the
analyzed area (Fig. 9b) was typical of this material show-
ing presence of Fe, but also that of Ti, Al, and Si; the
latter elements being components of kaolinite that was
the major mineral phase identified by XRD (Fig. 8).
Higher magnification of the analyzed region showed the
platey texture of the fundamental particles that were
,100 to 400 nm. The aggregated material appeared as a
matrix of fine-grained aluminosilicates and Fe oxides;
however, discrete Fe31 oxides were not identified.

The Eatontown hematite material (Fig. 10) yielded a
more defined XRD pattern with all peaks resolved as mix-
ture of quartz and hematite, with some goethite, mica,
and kaolinite. Hematite particles were easily isolated and
characterized in separates from the Eatontown hematite
sediment. The particles were located by their backscat-
tered image on SEM (not shown). Occasionally, the ox-
ides were aggregated with kaolinite, but free, spherically
shaped hematite particles (Fig. 11a) were the norm. The
geologic hematite in the Eatontown sediment was larger
in size (ø0.85 mm) than the synthetic hematite (Fig. 3a).
The geologic hematite contained Al and Si (Fig. 11b),
and a highly textured surface (Fig. 11c).

The bioreduction experiment with the oxidic subsur-
face separates was conducted much like that for the spec-

imen hematite and goethite. The masses of material were
adjusted to yield suspension concentrations of 36 mM
Fe31 for the Milford separates and 50 mM Fe31 for the
Eatontown hematite separates, based on DCB extraction
results. The maximum amount of Fe31 reduced in the Mil-
ford separates after 27 days of incubation (13.0 mM, Ta-
ble 5) was greater than observed for the whole sediment
(4.61 mM, Table 4), but the fractional reduction was less
(36.2% as compared to approximately 100%) (Tables 4
and 5). In general, less Fe31 was reduced in the Eaton-
town separates (4.6–9.5 mM) than in the Milford sepa-
rates (8.0–13.0 mM), Table 5. The maximal extent of Fe21

production in the Eatontown separates was similar to that
noted in the whole sediment (e.g., 9.53 mM as compared
to 10.5 mM), but the fractional reduction was also less
(e.g., 19.1% compared to 28.7%), as noted for the Mil-
ford separates. The fractional reducibility, or bioavail-
ability, of the oxide fraction in the sediments is therefore
not a constant value. It appears dependent on the concen-
tration of the Fe31 oxides (i.e., surface area) relative to
the microbial population size. Roden and Zachara (1996)
noted a similar effect and attributed it to an absorption
effect of the smaller oxide particles on the microorganism
surface. The organism surfaces may, themselves, become
saturated with oxide particles, preventing further contact
with other particles.

The XRD patterns of the reduced separates did not
show major mineralogic change from the starting mate-
rials (Figs. 12 and 13). There was a slight but noticeable
decrease in peak intensity of the crystalline oxides (e.g.,
goethite and hematite) after microbial reduction. Crystal-
line reduction products were not observed in the Milford
separates, although the degree of reduction (13.0 mM
Fe21-HCl at maximum) was similar in magnitude to that
of goethite (e.g., 16.4 mM, Table 2) where both vivianite
and siderite were observed (Fig. 4). Vivianite formation
was observed in the Eatontown hematite separates in the
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FIGURE 6. HCl-extractable (a) and aqueous Fe21 (b) observed in bioreduction experiments with subsurface sediments and CN32
in bicarbonate buffer. Results show the impact of AQDS and PO4.

treatment that produced the greatest extent of reduction
[P1AQDS, 9.53 mM Fe21, Fig. 13]. There was no evi-
dence for siderite formation (within the degree of sensi-
tivity of XRD) in the geologic separates in spite of 30
mM bicarbonate. Magnetite was also not observed.

Substrate and population dynamics. The lactate-driv-
en bioreduction of goethite (FeOOH) and hematite
(Fe2O3) may be described analogously:

2 14FeOOH 1 CH CHOHCOO 1 7H3

21 2 25 4Fe 1 CH COO 1 HCO 1 6H O (1)3 3 2

2 12Fe O 1 CH CHOHCOO 1 7H2 3 3

21 2 25 4Fe 1 CH COO 1 HCO 1 4H O (2)3 3 2

Acetate (CH3COO2) is produced at a molar ratio of 1:4,
acetate to Fe21. Acetate was measured after 27 d of in-
cubation and its concentration with respect to Fe21 fol-
lowed the expected molar ratio in Equations 1 and 2 (Fig.
14), although variability was noted. The results indicated
that the reduction of crystalline Fe31 oxides in the sub-
surface materials was the primary pathway for microbi-
ologic electron disposal during respiration of lactate.

Previous studies have shown that Shewanella strains
can grow using goethite (Roden and Zachara 1996) and

magnetite (Kostka and Nealson 1995) as electron accep-
tors. Cell numbers were determined in the bioreduction
experiments with geologic materials after 4, 11, and 27
d of incubation using acridine orange staining and epi-
fluoresence microscopy. Cell densities were quite uniform
throughout all treatments (data not shown) with an av-
erage of (2.0 6 0.1) 3 108 CN32 cells/mL, regardless of
whether media conditions were or were not growth sup-
porting (i.e., with or without P). The direct counts indi-
cated that growth was minimal, or at least not discernable
given the high initial cell concentration.

DISCUSSION

The experimental results define three major findings:
(1) AQDS enhances the bioreduction of both synthetic
and natural Fe31 oxides but the effects are more pro-
nounced on the synthetic ones, (2) both vivianite and sid-
erite are biogenic products of dissimilatory reduction of
synthetic and natural Fe31 oxides in bicarbonate buffer,
but vivianite formation precedes that of siderite, and (3)
the subsurface Fe31 oxides show differences in reducibil-
ity from the synthetic solids.

Role of AQDS
AQDS has been shown to mediate the bacterial reduc-

tion of HFO (Fredrickson et al. 1998; Lovley et al. 1996).
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TABLE 3. Extractable Fe and Al and mineralogy of subsurface materials

NH2OH·HCl* (mmol/g)

Fe Al

Am-Ox† (mmol/g)

Fe Al

DCB‡ (mmol/g)

Fe Al
Oxide§

Mineralogy

Surface\
Area

(m2/g)

Oyster 1.26 22.7 3.67 23.7 13.2 13.8 feroxyhyte 3.1
Milford 1.72 10.4 5.65 8.60 45.1 25.1 goethite 6.8
Eatontown goethite 0.18 0.40 0.66 0.76 183 21.2 goethite 1.4
Eatontown hematite 0.49 0.60 2.40 1.11 366 17.0 hematite/goethite 3.1

* Acidified hydroxyl-amine hydrochloride.
† Ammonium oxalate in the dark.
‡ Dithionite, citrate, and bicarbonate.
§ All crystalline Fe31 oxides observed by XRD, whether major or minor in apparent concentration.
\ Of the ,2 mm sediment.

FIGURE 7. Soluble PO4 in the bioreduction experiments with
subsurface sediments.

TABLE 4. Bioreduction extent of Fe31 oxide-containing
subsurface sediments

Oxide
Fe21-HCl

(mM) % Reduced

Oyster, H2O 0.81 61.4
Oyster, H2O1PO4 0.80 60.2
Oyster, AQDS 1.20 90.6
Oyster, AQDS1PO4 1.08 81.7
Milford, H2O 2.95 65.5
Milford, H2O1PO4 2.90 64.2
Milford, AQDS 4.61 100
Milford, AQDS1PO4 3.81 84.5
Eatontown-goethite, H2O 2.16 11.8
Eatontown-goethite, H2O1PO4 1.83 9.9
Eatontown-goethite, AQDS 4.44 24.3
Eatontown-goethite, AQDS1PO4 3.24 17.7
Eatontown-hematite, H2O 3.54 9.7
Eatontown-hematite, H2O1PO4 5.10 13.9
Eatontown-hematite, AQDS 7.30 19.9
Eatontown-hematite, AQDS1PO4 10.5 28.7

Ours, however, is the first report that AQDS also stimu-
lates DMRB reduction of crystalline Fe31 oxides.

AQDS can function as an electron acceptor/repository
for microbial respiration by the following reaction:

1 2 0AQDS 1 2H 1 2e 5 AHDS E 5 0.23 V (3)

Note, both the oxidized (AQDS) and reduced forms
(AHDS) carry a formal charge of 22 contributed by the
two sulfonate groups; AHDS is an acronym for the re-
duced species where both quinone groups have been re-
duced and protonated to phenolate groups. The mecha-
nisms by which AQDS enhances the reduction rate of Fe
oxides have not been established, but it is presumed that
AQDS functions as an electron shuttle between the mi-
crobial electron transport chain and the oxide surface, and
negates the need for direct organism-oxide contact. The
organisms donate electrons to AQDS at the terminal point
of the electron transport chain located in the periplasmic
space or outer membrane (Myers and Myers 1992), re-
ducing it to AHDS. Subsequently, AHDS forms a surface
complex on the oxide surface that passes electrons to the
Fe31 metal ion center. AHDS enhances Fe31 oxide reduc-
tion by gaining better accesses to complex interstices of
the solid not readily accessible to immobile redox pro-
teins on the bacterial surface.

Although studies have not been performed to document

that AHDS promotes abiotic reductive dissolution of Fe31

oxides, the behavior of a related compound (hydroqui-
none) has been studied (Kung and McBride 1988; LaKind
and Stone 1989; Stone and Morgan 1984; Stone and Ul-
rich 1989). AHDS is expected to complex with the Fe31

oxide surface in a manner similar to hydroquinone. Stone
and coworkers found that the ability of hydroquinone to
reductively dissolve Mn31, Mn41, Co31, and Fe31 oxides
was dependent on reaction thermodynamics and the ef-
fects of reduced metal sorption (Fe21, Mn21, and Co21) on
the remaining oxide surface. Hydroquinone was an effec-
tive reductant of both Mn and Co oxide at circumneutral
pH, but goethite and hematite were poorly dissolved
(LaKind and Stone 1989; Stone and Ulrich 1989). Ac-
cordingly, the reduction potential (E9) of hydroquinone
lies below that of the Mn31,41 and Co31 oxides above that
of the crystalline Fe31 oxides at neutral pH (Table 6).

AHDS, however, is a more powerful reductant than
hydroquinone and should readily reduce HFO [e.g.,
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FIGURE 8. X-ray diffractogram of unreduced Milford sepa-
rates, with card file data for reference phases.

FIGURE 9. Scanning electron micrograph of an average par-
ticle aggregate from the Milford separates (a), the EDS spectra
of the noted point that showed average properties (b), and higher
magnification of the surface at the analyzed point (c).

Fe(OH)3(s), Table 6] at circumneutral pH. Furthermore, its
reaction with goethite or hematite is potentially favorable
as its reduction potential lies immediately below that of
the crystalline Fe31 oxides at pH 7 under the other as-
sumed conditions of calculation (e.g., [Me21] and [AQDS/
AHDS]). The close parity in reduction potentials (E9) of
the AQDS and the crystalline Fe31 solids (Table 6) indi-
cates that the relative ability of AHDS to function as a
reductant is strongly dependent on the thermodynamic
properties of the solid phase Fe31 oxides, the [Fe21], and
the degree of reduction of AQDS promoted by microbial
respiration. The fact that AQDS promotes the bacterial
reduction of HFO and the crystalline oxides indicates it
is a preferred, or possibly more facile electron acceptor
for DMRB than is the Fe31 oxide surface. These obser-
vations and spectroscopic measurements by Fredrickson
et al. (1998) indicate that AQDS is converted to AHDS
by active DMRB under anoxic conditions.

Biogenic mineralization
Fe reduction in the bacterial system studied here is

driven by the microbial liberation of reductive equivalents
in lactate, the electron donor (Eqs. 1 and 2). Fe31 oxides,
and AQDS to a lessor degree, serve as a electron repos-
itory/acceptor and are reduced by the terminal reductase
or other electron transfer agents at the cell surface. A
decrease in system pe (opposite log of electron activity)
follows lactate metabolism and electron liberation. Figure
15 displays the computed stability of goethite and he-
matite [at 50 mM Fe31 ] as a function of pe in the 30 mM
bicarbonate buffer with 4 mM P and the other media com-
ponents listed in Table 1. The computation was performed
with the MINTEQA2 code incorporating aqueous com-
plexation reactions of sulfate, bicarbonate/carbonate,
phosphate, acetate, and lactate at the average values noted
in experiment (e.g., pH 6.9 and I 5 0.1).

Goethite is less stable than hematite and, hence, dis-
solves at a higher pe (ù1.8). This observation was, in
part, consistent with experiment where synthetic goethite

was found to be reduced to a greater extent by CN32 than
was synthetic hematite (Table 2). Free energy data indi-
cate that vivianite should be the initial phase to precipitate
as Fe21 is produced, as its solubility (in presence of 4 mM
P) is lower than siderite. Experiment confirmed this pre-
diction (Figs. 4, 5, and 13). In both the goethite and he-
matite systems, siderite precipitation was predicted to
commence when soluble P was fully incorporated into
vivianite. In contrast to the experimental result, however,
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FIGURE 10. X-ray diffractogram of unreduced Eatontown he-
matite, with card file data for reference phases.

FIGURE 11. Scanning electron micrograph of unreduced he-
matite particles from the Eatontown hematite sediment (a), the
elemental analysis of the noted spot by EDS (b), and a higher
magnification view of the natural oxide surface (c).

the thermodynamic calculation suggests that goethite and
hematite should fully dissolve to yield siderite when the
pe reaches the requisite value (e.g., 21.75 for goethite
and 24.0 for hematite). Possible reasons for these dis-
crepancies will be discussed later. This full predicted
transformation of the Fe31 oxide to Fe21 carbonate is driv-
en by the high total carbonate concentration of the system
(1022 mol/L in solution and 20% CO2(g) in the headspace).

Vivianite appears to form readily in sediments (Emer-
son and Widmer 1978; Postma 1981; Suess 1979) and
our observations indicate it exhibits rapid precipitation
rates in batch bioreduction experiments. Parallel to our
study, the paragenesis of vivianite and siderite in bog sed-
iment was predictable from thermodynamic considera-
tions such as those in Figure 15 (Postma 1981). The re-
lationship between total Fe21 and aqueous PO4 in the
bioreduction experiments of goethite and hematite with P
(both with and without AQDS) closely followed that of
a vivianite-siderite precipitation model (Fig. 16). Model
calculations were generated by metering Fe21 into the P-
containing (3.5 mM), bicarbonate (35 mM) buffered so-
lution at pH 6.9 and I 5 0.1 (I 5 ionic strength), and
allowing siderite and vivianite to precipitate when satu-
ration was exceeded. In that calculation, vivianite was
found to precipitate as a single discrete phase until P con-
centrations were exhausted [Fe21 ø 5 mM]. Above that
Fe21 concentration, siderite precipitated in association
with the vivianite. This precipitation sequence created the
two distinct linear sections in Figure 16.

Results from the sediment bioreduction experiments
qualitatively followed the vivianite-siderite model (Fig.
16). However, higher concentrations of 0.5 N HCl-ex-
tractable Fe21 were required in the sediments to achieve
comparable reductions in PO4(aq). This difference resulted
from the higher PO4(aq) concentrations used in the latter
experiments (4.5 mM, Fig. 7), and the possible effects of
Fe21 sorption to accessory phases in the sediments (e.g.,
kaolinite). We conclude from Figure 16 that the vivianite-
siderite phase association is a reasonable first order model
of the biomineralization processes in the oxide and sed-

iment bioreduction experiments, and that the limited sen-
sitivity of XRD (e.g., phases at less than 5 mass percent
are not readily resolved) prevented direct identification of
these phases in those experiments where bioreduction was
more limited.

The noted coexistence of goethite along with siderite
(Fig. 4) in presence of excess electron donor (lactate) was
one clear experimental indication of system disequilibria
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TABLE 5. Bioreduction of Fe31 oxide separates from Atlantic Coastal Plain subsurface sediments in bicarbonate buffer after 27 d
incubation

Solids Media Final pH
[Fe21]aq

(mmol/L)
[Fe21-HCl]
(mmol/L)

% Fe31

Reduced

Eatontown hematite separate* P 1 AQDS 7.44 0.63 9.53 19.1
Eatontown hematite separate* AQDS (-P) 7.23 2.52 6.39 12.8
Eatontown hematite separate* P (-AQDS) 7.18 0.14 4.58 9.16
Milford separates† P 1 AQDS 6.88 0.92 13.0 36.2
Milford separates† AQDS (-P) 6.65 1.34 10.5 29.1
Milford separates† P (-AQDS) 6.73 0.33 7.99 22.2

* 50 mM Fe31 starting concentration.
† 36 mM Fe31 starting concentration.

FIGURE 13. X-ray diffractograms of the unreduced and bio-
reduced Eatontown hematite under noted solution conditions.

FIGURE 12. X-ray diffractograms of the unreduced and bio-
reduced Milford separates under noted solution conditions.

(i.e., compare to Fig. 15) at experiment termination. This
assessment was not as easily made for hematite, because
siderite was not observed in the bioreduction experiments
and the noted association of vivianite and hematite (Fig.
5) was consistent with thermodynamic prediction be-
tween pe 5 23.2 to 24.2 (Fig. 15). Roden and Zachara
(1996) speculated that passivation of crystalline oxide
surfaces with sorbed, biogenic Fe21 prevented full micro-
bial utilization of Fe31 in goethite and hematite suspen-
sions. Abiotic analogues of this phenomena exist. For ex-
ample, surface passivation of magnetite by maghemite
prevents chromate reduction that otherwise proceeds rap-
idly on the clean magnetite surface (Peterson et al. 1996).
More recent experiments on DMRB reduction of crystal-
line Fe31 oxides, however, bring the Fe21 surface passi-
vation hypothesis into question. Urrutia et al. (1998)
found that S. alga re-inoculated into Fe31 oxide culture
or into oxide suspensions with Fe21 preadsorbed to oxides
at saturation levels were able to reduce significant
amounts of Fe31 associated with a synthetic goethite.
These results suggest that other complex and interactive
factors including biosorption and organism physiology
may also be significant.

Surface area and other factors controlling reducibility
of natural Fe31 oxides

Goethite and hematite have been used herein as models
of the crystalline Fe31 oxide fraction in subsurface sedi-
ment. The bioreducibility of the synthetic goethite and
the goethite in the Milford separates was similar (Table
7), whereas the synthetic hematite and the Eatontown he-
matite were less comparable. Generally, the geologic ox-
ides were equally or more reducible than their synthetic
counterparts. In a previous communication (Roden and
Zachara 1996) we found that the degree of reducibility,
or bioavailability, of a series of synthetic Fe31 oxides fol-
lowed in direct proportion to their surface area. Hematite
had the lowest surface area and fractional reducibility,
whereas HFO had the greatest. We questioned whether
morphology and particle size differences between the
synthetic and subsurface oxides might explain the noted
behaviors here.

Whereas the noted dependence of synthetic Fe31 oxide
bacterial reducibility on surface area is intuitive given the
heterogeneous nature of the reaction, it may be an over-
simplification. An issue is whether all the measured sur-
face area is, or can ever be available to the much larger
microorganism, and whether microbial induced aggrega-
tion occurs. Figure 3 shows that the fundamental crystal-
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FIGURE 14. Relationship of acetate generation to Fe31 reduc-
tion in the various media, AQDS, and PO4 treatments with the
subsurface sediments.

FIGURE 15. Thermodynamic calculations of goethite and he-
matite stability as a function of pe in the bicarbonate buffered
basal media. [C] is the concentration of the different solid
[FeOOH, Fe2O3, FeCO3, and Fe3(PO4)2·8H2O] and aqueous spe-
cies (Fe21) in moles per liter. Viv-goe, Sid-goe, and Fe -goe21

(aq)

represent the concentrations of Fe2(PO4)3·8H2O, FeCO3, and
Fe in equilibrium with goethite at the noted pe. Viv-hem, sid-21

(aq)

hem, and Fe -hem are defined, accordingly, for hematite. The21
(aq)

initial oxide concentrations in the calculation were 0.025 mol/L
hematite (50 mM as Fe31) and 0.050 mol/L goethite (50 mM as
Fe31).

TABLE 6. Reduction potentials of benzoquinone (Q) and AQDS relative to metal oxides

Half-reaction E8* E9† Source

1/2Mn41O2(s) 1 2H1 1 e2 5 1/2Mn21 1 H2O 11.29 10.64 Stone and Ulrich 1989
Mn31OOH(s) 1 3H1 1 e2 5 Mn21 1 2H2O 11.50 10.61 Stone and Ulrich 1989
CoOOH(s) 1 3H1 1 e2 5 Co21 1 2H2O 11.48 10.59 Stone and Ulrich 1989
1/2Q 1 H1 1 e2 5 1/2HQ‡ 10.70 10.23 Stone and Ulrich 1989
Fe(OH)3 1 3H1 1 e2 5 Fe21 1 3H2O 11.06 10.17 Lindsay 1979
FeOOH(s) 1 3H1 1 e2 5 Fe21 1 2H2O 10.67 20.22 Stone and Ulrich 1989
1/2Fe2O3(s) 1 3H1 1 e2 5 Fe21 1 3/2H2O 10.66 20.23 Stone and Ulrich 1989
1/2AQDS 1 H1 1 e2 5 1/2AHDS 10.23 20.24 Clark 1960

* E8 5 standard reduction potential.
† E9 5 reduction potential with [H1] 5 1.0 3 1027 mol/L, [Me1] 5 1.0 3 1026 mol/L, [Q, AQDS] 5 1.0 3 1026 mol/L and [HQ, AHDS] 5 1.0 3 1024

mol/L.
‡ HQ 5 hydroquinone.

lite size of the hematite and goethite are comparable at
300–500 nm, yet their surface areas differ by a factor of
ten with hematite being smaller. The higher surface area
of goethite may result from surface roughness or serrated
edges (Cornell and Schwertmann 1996) and internal mi-
croporosity, although the existence of microporosity in
acicular goethite is debatable (Naono and Figiwara 1980;
Naono et al. 1987; Torrent et al. 1990). Spherical hematite
lacks marked surface roughness (especially if calcined)
and interparticle porosity (Cornell and Schwertmann
1996), and its measured and calculated surface areas of-
ten coincide (Kandori et al. 1991). The surface area of
HFO is difficult to establish, and reported values range
between 300–700 m2/g depending on age, preparation,
and measurement method (Cornell and Schwertmann
1996; Dzombak and Morel 1990). The fundamental HFO
particles (ca. 5 nm) readily form aggregates . 0.1 mm
(Cornell and Schwertmann 1996) with significant inter-
particle porosity (Crosby et al. 1983) that may change
with aging (Weidler 1995) and temperature (Cornejo
1987).

The data in Figure 1 was not fully normalized by sur-
face area (Fig. 17). Goethite and hematite were reduced
comparably on a surface area basis in the absence of
AQDS as reported previously (Roden and Zachara 1996),
but this similarity decreased when AQDS was present.
The increased reduction of hematite over goethite with
AQDS was not expected. Rather, it was assumed that re-
duced AQDS would render goethite more available by
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FIGURE 16. Model and experimental data on the relationship
of total Fe21 [eg., 0.5N HCl extractable] to aqueous phosphate.
Shown are data from the oxide (Figs. 1a and 2b) and sediment
incubations (Figs. 5d and 6b) at experiment termination. The
model results were obtained by numerically metering Fe21 into
the P-containing (3.5 mM) bicarbonate buffered media (pH 6.9,
I 5 0.1) and allowing vivianite or siderite to precipitate accord-
ing to thermodynamic constraint. The plotted value of PO4 is that
remaining in solution after addition of the noted total concentra-
tion of Fe21. The model results define a region of active siderite
precipitation (PO4 , 0.2 mM) and one of active vivianite precip-
itation (PO4 . 0.2 mM).

TABLE 7. Comparison of bioreduction of synthetic and natural
oxides

Solid Treatment [Fe31] % Reduced

Goethite P 1 AQDS 50 mM 32.8
AQDS (-P) 50 mM 35.0
P (-AQDS) 50 mM 9.2

Milford Fines* P 1 AQDS 36 mM 36.2
AQDS (-P) 36 mM 29.1
P (-AQDS) 36 mM 22.2

Hematite† P 1 AQDS 50 mM 6.8
AQDS (-P) 50 mM 3.9
P (-AQDS) 50 mM 1.40

Eatontown Hematite‡ P 1 AQDS 50 mM 19.1
AQDS (-P) 50 mM 12.8
P (-AQDS) 50 mM 9.2

* Goethite is the primary Fe31 oxide.
† Second experiment X-ray diffraction collected (Fig. 5).
‡ Hematite is the primary Fe31 oxide.

FIGURE 17. Total biotic Fe21 generation in synthetic Fe31 ox-
ide suspensions (from Fig. 1a) normalized to surface area. Sur-
face areas used: HFO 5 550 m2/g, goethite 5 52.3 m2/g, and
hematite 5 5.2 m2/g.

accessing microtopographic features and microporous
regions along grain boundaries, etc., that were implied by
the surface area measurement and were not in position to
easily contact the microorganism surface. Experiment
replication indicated that the result with hematite and
AQDS was not spurious, although repeat results varied
significantly (620%) within the range discussed previ-
ously (Fredrickson et al. 1998). HFO was markedly less
reducible than either hematite or goethite when 550 m2/g
was used as the estimated surface area. The HFO in these
experiments was autoclaved. Heating HFO changes its
aggregate and pore structure (Cornejo 1987), reduces sur-
face area (Stanjek and Weidler 1992), and may induce
transformation to hematite (Cornell and Schwertmann
1996; Stanjek and Weidler 1992) that PO4 acts to retard
(Fredrickson et al. 1998). Thus, the surface area used for
normalization may be in error for HFO, with a smaller
value being more appropriate. In spite of these potential
effects of heat on HFO properties, however, Fredrickson
et al. (1998) saw little effect of autoclaving on the bio-
reduction of HFO by CN32. Given the noted questions
and uncertainties, a more detailed evaluation (both with
and without AQDS) of the relationship between bacterial

dissolution and Fe31 oxide surface area appears
warranted.

Dissolution studies with synthetic Fe31 oxides have
shown that dissolution rate is controlled by various inter-
related factors that are often difficult to resolve including
surface area; morphology; crystal habit; microheteroge-
neities such as point defects, dislocations, microfractures,
domain boundaries, corners, ledges, etc.; internal order;
and minor element substituents (Cornell and Schwert-
mann 1996). These factors have contrasting effects. For
example, the presence of microheterogeneities and inter-
nal disorder increases dissolution rate (e.g., Schwertmann
et al. 1985) whereas Al substitution, a common feature
of geologic and soil goethites and hematite, slows dis-
solution (Norrish and Taylor 1961; Schwertmann 1984;
Torrent et al. 1987).

The dissolution behavior of natural oxides is compli-
cated by variations in all the above noted factors, and
indeed Schwertmann (1991) was unable to correlate the
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acid dissolution rates of a series of natural Fe oxides with
measurable properties such as surface area and Al-sub-
stitution. We observed that Fe31 oxides in the Milford
separate exhibited comparable bacterial reducibility to
synthetic goethite in spite of their apparent smaller size.
In contrast, the geologic hematite (Eatontown) seemed
more reducible than its synthetic counterpart, in spite of
larger crystallite size. Aluminum concentrations in DCB
extractions (not shown) and Mössbauer and XRD mea-
surements (Zachara, unpublished data) of the Milford and
Eatontown separates both imply that the geologic Fe31

oxides are Al-substituted, although the concentration de-
gree has not yet been established. The differential behav-
ior of the geologic and synthetic Fe31 oxides observed
herein is not resolvable with current data, but is likely
influenced by Al-substitution and other factors related to
crystallite order and defects. The presence of associated
mineral phases that may adsorb biogenic Fe21 in the geo-
logic Fe31 oxide separates may also have an unknown
influence on both dissolution rate, extent, and
biomineralization.

It was noted (Fig. 17) that synthetic hematite is equally
bioreducible to goethite on a surface area basis, and may
be even more reducible than goethite in presence of an
electron shuttle (AQDS), reasons unknown. Furthermore,
the geologic hematite (Eatontown) was more reducible
than expected given its relatively large crystallite size (ca.
0.85 mm, Fig. 11). These findings seem consistent with
color changes (yellowing/xanthization) observed during
reduction of goethitic/hematitic soils (Cornell and
Schwertmann 1996; Jeanroy et al. 1991) that are thought
to result from the preferential dissolution of soil hematite
over goethite. The cause for such preferential dissolution
has not been determined, but is speculated to result from
the inhibitory effect of Al-substitution on goethite, as soil
goethite typically shows greater Al content. Our results
suggest, however, that other properties of geologic/soil
hematite, such as disorder or microheterogeneities (e.g.,
Fig. 11c), may enhance its reducibility over synthetic
phases.

CONCLUSIONS

S. putrefaciens, CN32, was effective in reducing syn-
thetic and geologic crystalline Fe31 oxides. Except in lim-
ited cases where Fe31 oxides were in low concentration
in geologic materials, the oxides were not reduced to
completion in presence of excess electron donor suggest-
ing chemical or physiologic controls on bioavailability.
Vivianite and siderite were the primary crystalline prod-
ucts of Fe31 oxide bioreduction. Both phases precipitated
readily in our experimental systems, and the conditions
of their formation were consistent with published solu-
bility values. It was not established, however, whether the
microorganisms acted to nucleate or direct the precipita-
tion of these secondary phases. The geologic Fe31 oxides
were more reducible than their synthetic counterparts,
possibly as a result of crystallinity differences or micro-
heterogeneities. S. putrefaciens demonstrated remarkable

ability to access Fe31 oxides in complex mineral com-
posites, as shown with the Milford fines. Precisely how
the microorganisms differentiate and isolate the Fe31 ox-
ides in a mixture of mineral phases and what controls the
bioavailability of the Fe31 oxide once found are important
biogeochemical questions that beg resolution.
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